Article

Article title TRANSFORMATION OF THE LINGUISTIC DESCRIPTION OF LEGITIMACIES IN MONITORING DATA IN THE HYBRID PATTERN OF THE EXPERT SYSTEM
Authors E.S. Starikov, L.I. Suchkova
Section SECTION IV. METHODS, MODELS AND ALGORITHMS OF INFORMATION PROCESSING
Month, Year 06, 2017 @en
Index UDC
DOI
Abstract The linguistic method of formalising the expert knowledge and transformation of the expert description of legitimacies in a hybrid pattern of the mechanism of decision-making in the expert system is described herein. Features of the developed specialised language for describing the tem-poral events on the monitoring object are resulted. The language generative grammar is modifica-tion of universal temporal grammar and allows operating with fuzzy data. Modification consists in the simplified description of multilevel legitimacies in data, in allocation to the expert of possibility to describe new algorithms of processing of time rows, and also considerations of operations over fuzzy data. The principle of identification of an object state of the control with application of a matrix pattern of behaviour of time rows group is considered, the short description of its components is resulted. It is shown, that for support of integration of new knowledge in the expert system grounded on patterns of behaviour of time rows, it is necessary to carry out transformation of the linguistic description of the legitimacies observed in data of monitoring, in the pattern of the expert system directly applied to decision-making. Resources of the lexical, syntactic and semantic analysis are developed for this purpose. For storage of the information on the objects described with temporal grammar using, the tree structure of data is developed. It is a basis for implementation of syntactically oriented translation in a hybrid pattern. The description of the semantic information necessary for realisation of conversion in a pattern of all objects, used for the description temporal legitimacies in data is resulted. The integrated algorithm of conversion of semantic knots in the structures which are a part of a hybrid pattern of behaviour and an example of syntactically controlled translation is considered. The developed method of transformation of expert knowledge in a hybrid pattern allows to automate revealing of legitimacies in data and automatically to integrate new knowledge into the expert system.

Download PDF

Keywords The linguistic description of legitimacies; pattern of behavior; legitimacy in data; terms of linguistic variables; the expert system; temporal grammar.
References 1. Boks Dzh., Dzhenkins G. Analiz vremennykh ryadov. Prognoz i upravlenie [The time series analysis. Prognosis and management]. Moscow: Mir, 1974, 406 p.
2. Pavlov S.I. Sistemy iskusstvennogo intellekta: ucheb. posobie [Artificial intelligence system: a tutorial]. Tomsk: Tomskiy gosudarstvennyy universitet sistem upravleniya i radioelektroniki, 2011. Part 1, 175 p. ISBN 978-5-4332-0013-5. Available at: http://biblioclub.ru/ in-dex.php?page=book&id=208933.
3. Batyrshin I., Sheremetov L., Herrera-Avelar R., Suarez R. Mining Fuzzy Association Rules and Networks in Time Series Databases, International Conference on Fuzzy Sets and Soft Computing in Economics and Finance, FSSCEF 2004, St. Petersburg, Russia, 2004.
4. Batyrshin I.Z., Nedosekin A.O., Stetsko A.A., Tarasov V.B., Yazenin A.V., Yarushkina N.G. Nechetkie gibridnye sistemy. Teoriya i praktika [Fuzzy hybrid system. Theory and practice], ed. by N.G. Yarushkinoy. Moscow: Fizmatlit, 2007, 207 p.
5. Parsaye K.A. Characterization of Data Mining Technologies and Processes, The Journal of Data Warehousing, 1998, No. 1.
6. Yarushkina N.G., Afanas'eva T.V., Perfil'eva I.G. Intellektual'nyy analiz vremennykh ryadov: ucheb. posobie [Intelligent time series analysis: textbook]. Ul'yanovsk: UlGTU, 2010, 320 p.
7. Moёrchen F., Ultsch A. Mining Hierarchical Temporal Patterns in Multivariate Time Series, In: Biundo, S., Fruhwirth, T., Palm, G. (eds.), KI 2004. Advances in Artificial Intelligence, Proceedings 27th Annual German Conference in AI, Ulm, Germany, Springer, Heidelberg, 2004, pp. 127-140. Available at: http://www.mybytes.de/papers/moerchen04mining.pdf.
8. Guimaraes G., Ultch A. A method for temporal knowledge conversion, Proc. of the 3rd Int. Symp.on Advances in Intelligent Data Analysys, Amsterdam, Springer, pp. 369-380.
9. Batyrshin I., Sheremetov L., Herrera-Avelar R., Panova A. Moving approximation transform and local trend associations in time series databases, Perception-based Data Mining and Deci-sion Making in Economics and Finance. Series: Studies in Computational Intelligence. Springer, 2007, Vol. 36, pp. 55-83.
10. Batyrshin I., Sheremetov L. Towards perception based time series data mining, in: BISCSE’2005, University of California, Berkeley, USA, 2005, pp. 106-107.
11. Batyrshin I.Z., Sheremetov L.B. Perception based associations in time series data bases, Pro-ceedings of NAFIPS, 2006.
12. Batyrshin I., Sheremetov L. Perception based time series data mining for decision making, IFSA’07 Theoretical Advances and Applications of Fuzzy Logic, pp. 209-219.
13. Kovalev S.M. Modeli analiza slabo formalizovannykh dinamicheskikh protsessov na osnove nechetko-temporal'nykh sistem [Analysis models of weakly formalized dynamic processes based on fuzzy-temporal systems], Izvestiya vuzov: Severo-Kavkazskiy region. Estestvennye nauki [University News North-Caucasian Region. Natural Sciences Series], 2002, No. 2, pp. 10-13.
14. Kovalev S.M. Gibridnye nechetko-temporal'nye modeli vremennykh ryadov v zadachakh analiza i identifikatsii slabo formalizovannykh protsessov [Hybrid fuzzy-temporal time series model in the tasks of analysis and identification of weakly formalized processes], Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte: Sbornik trudov IV mezhdunarodnoy nauchno-prakticheskoy konferentsii [Integrated models and soft computing in artificial intelligence: proceedings of the IV international scientific-practical conference].
In 2 vol. Vol. 1. Moscow: Fizmatlit, 2007, 354 p.
15. Ultch A. A unification-based grammar for the description of com-plex patterns in multivariate time series. Germany, 1996.
16. Starikov E.S., Suchkova L.I., Koreshkov Yu.N., Koreshkova A.A. Universal'nyy podkhod k opisaniyu i ispol'zovaniyu ekspertnoy informatsii v sistemakh monitoringa na baze patternov povedeniya [Universal approach to description and use of expert information in monitoring systems on the basis of patterns of behavior], Polzunovskiy al'manakh [Polzunovsky Almanac], 2015, No. 1, pp. 31-35.
17. Suchkova L.I. Algoritmicheskoe obespechenie monitoringa neshtatnykh sostoyaniy ob"ekta kontrolya na osnove mnogomernykh patternov [Algorithmic support for monitoring abnormal States of the control object on the basis of multidimensional patterns], Izvestiya AGU [Izvestiya of Altai State University], No. 1/2/2013, pp. 118-122.
18. Suchkova L.I., Chumakov I.A., Yakunin A.G. Identifikatsiya vozdeystviy v priborakh okhrany uprezhdayushchego tipa: monografiya [Identification of effects of devices of protection type-ahead: monograph]. Doitschland, Saarbrücken, Palmarium Academic Publishing, 2013, 181 p.
19. Starikov E.S., Suchkova L.I. Gibridno-lingvisticheskiy pattern kak sredstvo opisaniya temporal'nykh aspektov slabostrukturirovannykh protsessov v sistemakh monitoringa [Hybrid-linguistic pattern as a means to describe temporal aspects of semistructured processes in moni-toring systems], Mezhdunarodnoe periodicheskoe izdanie «Nauchnye trudy Sworld» [Interna-tional periodical "Scientific works Sworld"], No. 4/41/2015. Ivanovo, 2015, pp. 23-26.
20. Höppner F. Discovery of temporal patterns – learning rules about the qualitative behavior of time series, In: Proc. of the 5th European Conference on Principles and Practice of Knowledge Discovery in Databases, Lecture Notes in Artificial Intelligence 2168, Springer, 2001, pp. 192-203.
21. Ultch A. Unification Based Temporal Grammar. In: Technical Re-port No. 37, Philipps-University Marburg, Germany, 2004.
22. Mörchen F., Ultsch А. Mining Hierarchical Temporal Patterns in Multivariate Time Series. Available at: http://citeseerx.ist.psu.edu/viewdoc/download.
23. Suchkova L.I., Starikov E.S. K voprosu o metode vyyavleniya zakonomernostey v dannykh monitoringa [To the question about the method of identifying patterns in data monitoring], Materialy 14 Mezhdunarodnoy konferentsii «Izmerenie, kontrol', informatizatsiya» [Proceed-ings of the 14 International conference "Measurement, control, information"]. Barnaul: AltGTU, 2013, pp. 155-157.
24. Starikov E.S. Formalizatsiya opisaniya zakonomernostey v gruppakh vremennykh ryadov [For-malization of the description of regularities in groups of time series], Sbornik po rezul'tatam XXI zaochnoy nauchnoy konferentsii «Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal» [Proceedings of the XXI according to the results of the correspondence scientific conference "international research journal"]. Ekaterinburg, 2013, No. 11 (18), Part 1, pp. 131-132.
25. Starikov E.S., Suchkova L.I. Modification universal temporal grammar for the description of the legitimacies in data, Academic science-problems and achiewments X vol. 1 spc Academic. USA, North Charleston, 2016, pp. 63-65.

Comments are closed.