Article

Article title IMPLEMENTATION OF COMPUTER MODELING OF A SYSTEM WITH A PARTICLE IN ONE- AND TWO-DIMENSIONAL SPACE AT QUANTUM LEVEL
Authors S.M. Gushanskiy, M.Yu. Polenov, V.S. Potapov
Section SECTION IV. METHODS, MODELS AND ALGORITHMS OF INFORMATION PROCESSING
Month, Year 06, 2017 @en
Index UDC 004.032
DOI
Abstract This paper describes the concept of bandwidth, characteristic of a quantum data channel in the presence of external noise. Also, a computer simulation of a system with a particle in one-dimensional and two-dimensional space at the quantum level was made with the appropriate soft-ware implementation and visualization of the results. Within the framework of the carried out im-plementation, the behavior of the particle (electron) is graphically reflected. Also analyzed and described such concepts of quantum mechanics as the wave function, and the capacity of a quantum channel with noise, as a result of which the formula for calculating the capacity of a depolarizing channel was derived. The relevance of these studies lies in the numerical implementation of the capacity of a quantum channel, taking into account the various types of noise that arise in quantum computing devices. It will become one more step forward the research of the elementary theoretical base of a quantum computing device and, as a consequence, the practical, physical realization of this device. The urgency of the work is also explained by the large number of both experimental and theoretical works devoted to these issues. The scientific novelty of this direction is first of all expressed in the constant updating and supplementation of the field of quantum research in a number of directions, and computer simulation of quantum physical phenomena and features, such as quantum bandwidth features, is poorly illuminated in the world. The purpose of this paper is a computer simulation of the particle"s behavior at the quantum level, which will allow us to analyze its operation within the computational process of the quantum computer model. And the universal formula for finding bandwidth, derived in the framework of this paper, will allow us to calculate the rate of transmission of quantum information embedded in a particle.

Download PDF

Keywords Capacity; quantum particle; wave function; potential well; depolarizing channel; density matrix; Planck constant; zero energy; entropy.
References 1. Quantum mechanics. (2017, March 29). In Wikipedia, The Free Encyclopedia. Retrieved 15:50, March 30, 2017. Available at: https://en.wikipedia.org/w/index.php?title=Quantum_ mechanics&oldid=772744105 (accessed 07 April 2017).
2. Kanal svyazi [Communication channel], Vikipediya [Wikipedia]. Available at: http://ru.wikipedia.org/?oldid=82036424 (accessed 22 November 2016).
3. Propusknaya sposobnost' [Capacity], Vikipediya [Wikipedia]. Available at: http://ru.wikipedia.org/?oldid=84570452 (accessed 30 March 2017).
4. Kvantovaya kriptografiya [Quantum cryptography], Vikipediya [Wikipedia]. Available at: http://ru.wikipedia.org/?oldid=82377595 (accessed 07 March 2017).
5. Moren K. Metody gil'bertova prostranstva [Methods of Hilbert space]. Moscow: Mir, 1965, 570 p.
6. Amann H., Arendt W., Neubrander F. Functional Analysis and Evolution Equations: The Günter Lumer Volume, Basel: Birkhäuser, 2008. Doi: 10.1007/978-3-7643-7794-6, MR 2402015.
7. Potapov V.S., Gushanskiy S.M. Kvantovye tipy oshibok i metody ikh ustraneniya, zavisimost' oshibki ot mery i chistoty zaputannosti [Quantum types of errors and their rectification, the dependence of the error of the measure and purity of entanglement], Sbornik trudov KhIV Vserossiyskoy nauchnoy konferentsii molodykh uchenykh, aspirantov i studentov "Informatsionnye tekhnologii, sistemnyy analiz i upravlenie (ITSAiU-2016)" [Proceedings of XIV all-Russian scientific conference of young scientists, postgraduates and students "Infor-mation technologies, system analysis and management (Idayu-2016)"]. Rostov-on-Don: Izd-vo YuFU, 2016, Vol. 3, pp. 123-129.
8. Bennett С.H., Shor P.W., Smolin J.A., Thapliyal A.V. Entanglement-assisted Capacity of a Quantum Channel and the Reverse Shannon Theorem, IEEE Transactions on Information Theory, 2002, Vol. 48, pp. 26-37.
9. Ekert A, Hayden P., Inamori H. Basic concepts in quantum computation. arXiv:quant-ph/0011013. 2008.
10. Guzik V.F., Gushanskiy S.M., Potapov V.S. Kolichestvennye kharakteristiki stepeni zaputannosti [Quantitative characteristics of the degree of entanglement], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, No. 3 (176), pp. 76-86.
11. Wilde M. From Classical to Quantum Shannon Theory, arXiv:1106.1445.
12. Potapov V.S., Gushanskiy S.M., Guzik V.F. Kvantovye tipy oshibok i metody ikh ustraneniya, zavisimost' oshibki ot mery i chistoty zaputannosti [Quantum types of errors and their rectifi-cation, the dependence of the error of the measure and purity of entanglement], Sbornik trudov KhIV Vserossiyskoy nauchnoy konferentsii molodykh uchenykh, aspirantov i studentov "Informatsionnye tekhnologii, sistemnyy analiz i upravlenie (ITSAiU-2016)" [Proceedings of XIV all-Russian scientific conference of young scientists, postgraduates and students "Infor-mation technologies, system analysis and management (Idayu-2016)"]. Rostov-on-Don: Izd-vo YuFU, 2016, Vol. 2, pp. 339-344.
13. Nil'sen M., Chang I. Kvantovye vychisleniya i kvantovaya informatsiya [Quantum computation and quantum information]. Moscow: Mir, 2006, 824 p.
14. Potentsial'naya yama [Potential well], Bol'shaya sovetskaya entsiklopediya [Great Soviet encyclopedia]: in 30 vol., chief ed. A.M. Prokhorov. 3 ed. Moscow: Sovetskaya entsiklopediya, 1969-1978.
15. Dvizhenie chastits v pryamougol'noy potentsial'noy yame [The movement of particles in a rectangular potential well]. Available at: http://teachmen.ru/ work/lectureSQ/ (accessed 09 March 2017).
16. Landau L.D., Lifshits E.M. Kvantovaya mekhanika (nerelyativistskaya teoriya) [Quantum mechanics (nonrelativistic theory)]. Moscow: Fizmatlit, 2008, 800 p.
17. Kleppner D., Kolenkow R. An Introduction to Mechanics (Second ed.). Cambridge: Cambridge University Press, 2014, 49 p.
18. Bohr–Einstein debates. In Wikipedia, The Free Encyclopedia. Retrieved 27, March 30, 2017. from https://en.wikipedia.org/w/index.php?title=Bohr%E2%80%93Einstein_debates&oldid=771158559 (accessed 09 March 2017).
19. Urovni Landau [Landau Levels], Vikipediya [Wikipedia]. Available at: http://ru.wikipedia.org/?oldid=79197200 (accessed 26 June 2016).
20. Beazley D. Python: Essential Reference. 4-th ed. Addison Wesley, 2009, 640 p.
21. NumPy, Vikipediya [Wikipedia]. Available at: http://ru.wikipedia.org/?oldid=83026334 (ac-cessed 13 January 2017).
22. Vaingast Sh. Beginning Python Visualization: Crafting Visual Transformation Scripts. Springer, 2009, 384 p.
23. Bressert E. SciPy and NumPy. O'Reilly, 2012, 57 p.
24. Belousov Yu.M., Man'ko V.I. Matritsa plotnosti. Predstavleniya i primeneniya v statisticheskoy mekhanike [The matrix density. Submission and application in statistical mechanics]. Moscow: MFTI, 2004, 163 p.
25. Volnovaya funktsiya [The wave function], Vikipediya [Wikipedia]. Available at: http://ru.wikipedia.org/?oldid= 81738254 (accessed 06 November 2016).
26. Potapov V., Gushansky S., Guzik V., Polenov M. Architecture and Software Implementation of a Quantum Computer Model, Advances in Intelligent Systems and Computing. Springer Verlag, 2016 Vol. 465, pp. 59-68.

Comments are closed.