Authors S.V. Malohatko, E.Yu. Gusev, J.Y. Jityaeva, A.V. Bykov
Month, Year 06, 2017 @en
Index UDC 621.382:669.691.5
Abstract The actual task of probe microscopy is the development and optimization of constructive-technological solutions of specialized cantilevers for a wide range of its methods for choosing the options for selecting materials, their number, their geometry, and the introduction of various func-tional layers. In this case, the choice of console material, different from the traditional one, as well as increasing the number of consoles, allows expanding its functionality and using it in several methods. The aim of this work is the development of a two-beam cantilever made of polycrystalline silicon for the vibrational technique of atomic force microscopy. The paper presents the results of numerical simulation of the deviation from finite elements, and also provides analytical calculations of the resonant frequency and the stiffness coefficient. The construction of a cantilever consisting of two beams of a rectangular shape located on both sides of the base, on the free ends of which there is a point, is considered. Polycrystalline silicon was used as a material for beams and a point. The thickness and width of the beams remained constant at 1.5 and 35 μm, respectively. The simulation was performed under the condition that the geometrical parameters of the tip and its position did not change: the tip height was 8 μm, the base radius was 3 μm and the tip radius was 45 nm, and the removal from the remaining beam parts was 105 μm. The calculated deviation values with an increase in the impact force of 100–1100 nN with a fixed beam length of 110 μm, as well as its length from 10 to 250 μm at a constant power from 100 to 1100 nN, from 20 to 300 and from 20 to 260 nm, respectively.Analytical calculations of the stiffness factor and resonance frequency with a change in length from 50 to 250 μm have been carried out (the question is why it has been shortened to a long, i.e., initial value from 10 to 50 μm). The obtained data made it possible to determine the design of a two-beam cantilever with geometric parameters providing an optimal ratio of the deviation, stiffness and resonant frequency of beams, and suitable for vibrational and contact methods of atomic force microscopy.

Download PDF

Keywords Micro- and nanosystems; atomic force microscopy; two-beam cantilever; polycrystalline silicon.
References 1. Giessibl F.J. Advances in atomic force microscopy, Rev. Mod. Phys., 2003, Vol. 75, pp. 949-983.
2. Peter E., Paul W. Atomic Force Microscopy. London: OxfordUniversityPress, 2010, 283 p.
3. TsKP «Materialovedenie i diagnostika v peredovykh tekhnologiyakh» pri FTI im. A.F. Ioffe. Issledovanie topografii poverkhnosti tverdykh tel metodom atomno-silovoy mikroskopii v polukontaktnom rezhime [Investigation of the topography of the surface of solids by atomic force microscopy in a semi-contact mode]. Available at: AFM_v.n2.0.pdf (accessed 2 March 2017).
4. Mironov V.L. Osnovy skaniruyushchey zondovoy mikroskopii [Basics of scanning probe mi-croscopy]. Nizhniy Novgorod: Institut fiziki mikrostruktur, 2004, 114 p.
5. Bharat Bhushan. Springer Handbook of Nanotechnology. London: Springer Science & Busi-ness Media, 2010, 1964 р.
6. Varadan V., Vinoy K., Dzhoze K. VCh MEMS i ikh primenenie [HF MEMS and their applica-tion]. Moscow: Tekhnosfera, 2004, 528 p.
7. NTEGRA Spektra II. Mnogofunktsional'naya avtomatizirovannaya sistema dlya ASM-Raman, SBOM i TERS issledovaniy [Spectra II. A multifunctional automated system for AFM-Raman, SNOM and TERS research]. Available at: (accessed 15 April 2017).
8. Bykov V.A. Mikromekhanika dlya skaniruyushchey zondovoy mikroskopii i nanotekhnologii [Micromechanics for scanning probe microscopy and nanotechnology], Mikrosistemnaya tekhnika [Microsystem technology], 2000, No. 1, pp. 21-32.
9. Bykov A.V. Konstruktivno-tekhnologicheskie osobennosti kantileverov dlya atomno-silovoy mikroskopii [Structural and technological features of cantilevers for atomic force microscopy], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 143-148.
10. Johnson R.L. Characterization of piezoelectric ZnO thin fims and the fabrication of piezoelectric micro-cantilevers: thesis. Masterof Science. Ames: Iowa State University, 2005, 109 p.
11. Bykov A.V. Modelirovanie otkloneniya kantilevera na osnove polikristallicheskogo kremniya [Modeling of cantilever deviation based on polycrystalline silicon], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 9 (170), pp. 145-150.
12. Bykov V.A. Pribory i metody skaniruyushchey zondovoy mikroskopii dlya issledovaniya i modifikatsii poverkhnosti: diss. d-ra. tekhn. Nauk [Instruments and methods of scanning probe microscopy for the study and modification of the surface. Dr. eng. sc. diss.]. Moscow: Gos. NII fiz. Problem im. F.V. Lukina, 2000, 393 p.
13. Gurtov V. A., Belyaev M. A., Baksheeva A.G. Mikroelektromekhanicheskie sistemy: ucheb. Posobie [Microelectromechanical systems: textbook]. Petrozavodsk: Iz-vo PetrGU, 2016, 171 p.
14. Krasnoborod'ko S.Yu. Issledovanie i razrabotka kompleksa metodik dlya sovershenstvovaniya funktsional'nykh i tochnostnykh kharakteristik atomno-silovoy i magnitno-silovoy mikroskopii [Research and development of a set of techniques for improving the functional and accuracy characteristics of atomic force and magnetic force microscopy]. Available at:'ko_dis.pdf (accessed 2 February 2017).
15. Pavlov I., Khokhlov A. Fizika tverdogo tela [Solid State Physics]. Moscow: Vysshaya shkola, 2000, 494 p.
16. Vasenkov A., Epifanova V., Yudintsev V. Mikroelektroomekhanicheskie sistemy. Nastalo vremya vykhodit' v svet [Microelectroomechanical systems. It's time to go out]. Available at: (accessed 3 March 2017).
17. Boisen A., Dohn S. Cantilever-like micromechanical sensors, Reports on Progressin Physics, 2011, Vol. 74M, No. 3, pp. 30.
18. Ansari M. Z., Cho C. A Study on Increasing Sensitivity of Rectangular Microcantilevers Used in Biosensors, Sensors, 2008, Vol. 8, pp. 7530-7544.
19. Gusev E.Yu., Gamaleev V.A., Mikhno A.S., Bykov A.V., Zhityaeva Yu.Yu. Optimizatsiya konstruktsii kontaktno-metallizatsionnoy sistemy p'ezokantilevera dlya atomno-silovoy mikroskopii [Optimization of the construction of the contact-metallization system of the piezocantilever for atomic force microscopy], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 158-165.
20. Konoplev B.G., Ageev O.A., Kolomiytsev A.S. Formirovanie nanorazmernykh struktur na kremnievoy podlozhke metodom fokusirovannykh ionnykh puchkov [Formation of nanosized structures on a silicon substrate by the method of focused ion beams], Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [News of Higher Educational Institutions. Electronics], 2011, No. 1 (87), pp. 29-34.
21. Konoplev B.G., Ageev O.A., Smirnov V.A., Kolomiytsev A.S., Il'in O.I. Modifikatsiya zondovykh datchikov-kantileverov dlya atomno-silovoy mikroskopii metodom fokusirovannykh ionnykh puchkov [Il'in OI Modification of probe probes-cantilevers for atomic force microscopy by the method of focused ion beams], Nano- i mikrosistemnaya tekhnika [Nano- and Microsystem technology], 2011, No. 4, pp. 4-8.
22. Konoplev B.G., Ageev O.A., Smirnov V.A., Kolomiitsev A.S., Serbu N.I. Probe modification for scanning-probe microscopy by the focused ion beam method, Russian Microelectronics, 2012, Vol. 41, No. 1, pp. 41-50.
23. Poznyak G.G., Kopylov V.V., Rogov V.A. Sovremennye metody proektirovaniya nanotekhnologicheskikh protsessov v mashinostroenii [Modern methods of designing nanotechnological processes in engineering]. Moscow: RUDN, 2008, 114 p.
24. Nazarov D. Obzor sovremennykh programm konechno-elementnogo analiza [Review of modern programs of finite element analysis]. Available at: (accessed 5 March 2017).
25. French P.J. Polysilicon: a versatile material for Microsystems, Sensors and actuators A Physi-cal, 2002, Vol. 99, pp. 3-12.

Comments are closed.