Authors M.M. Musayev, N.N. Kisel
Month, Year 06, 2017 @en
Index UDC 621.396.67
Abstract In the antenna technique, the use of metamaterials is considered promising for the creation of new classes of microwave devices, radiators and phased arrays based on them, which make it possible to optimize the spectral properties of phased-array radiation and control the parameters of their directional patterns. Reducing the size of antennas and increasing the directivity of radiation for fixed dimensions of radiators are one of the important tasks of antenna technology. One way to solve this problem is to use the metamaterial layers located between the emitter and the substrate. An antenna lens based on a combined metamaterial representing a structure of open ring resonators and a flat structure based on frame elements is considered. Numerical and experimental studies have been carried out and the efficiency of the use of metamaterials as antenna substrate has been demonstrated with the aim of improving the directional properties of the antenna and reducing the antenna dimensions in the area of realizing the negative values of the dielectric or magnetic permeabilities of the metamaterial. Outside the working frequency band of the meta-material, its presence does not affect the characteristics of the antenna. It has been shown numerically and experimentally that the use of metamaterials near elementary emitters of electromagnetic waves makes it possible to increase the antenna gain and narrow the radiation pattern for fixed transverse dimensions of the antenna. It is shown that the use of a substrate from a combined metamaterial based on square open ring resonators makes it possible to obtain an increase in the gain of a symmetrical cross-shaped antenna by 12 dB in the region of realization of negative values of the dielectric constant. Thus, the metamaterial layer can be considered as an analogue of antenna lens focusing the radiation of the antenna.

Download PDF

Keywords Metamaterial; antenna lens; open ring resonators; antenna gain factor.
References 1. Vendik I.B., Vendik O.G. Metamaterialy i ikh primenenie v tekhnike sverkhvysokikh chastot [Metamaterials and their applications in engineering ultra-high frequencies], Zhurnal tekhnicheskoy fiziki [Journal of Technical Physics], 2013, Vol. 83, Issue 1, pp. 3-27.
2. Simovskiy K.R. O material'nykh parametrakh metamaterialov [On material parameters of metamaterials], Optika i spektroskopiya [Optics and Spectroscopy], 2009, Vol. 107, No. 5, pp. 766-793.
3. Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C., Schultz S. Compisite medium with simultaneously negative permeability and permittivity, Physical Reiew Letter, 2000, Vol. 84, No. 18, pp. 4184-4187.
4. Shelby R.A., Smith D.R., Nemat-Nasser S.C., Shultz S. Microwave transmission thought two-dimensional, isotropic, left-handed metamaterial, Applied Physics Letter, 2001, Vol. 78, No. 4, pp. 489-490.
5. Wu B.I., Wang W., Pacheco J., Chen X., Grzegorczyk T., Kong J.A., Kao P., Theophelakes P.A and Hogan M.J. Anisotropic Metamaterials as Antenna Substrate to Enhance Directivity, Microwave and Optical Technology Letters, 2006, Vol. 48 (4), pp. 680-683.
6. Boyko S.N., Veselago V.G., Vinogradov E.A., Zhukov A.A. Malogabaritnye antenny na osnove metamaterialov (prakticheskie aspekty) [Small antennas based on metamaterials (practical aspects)], Antenny [Antenna], 2012, No. 12 (187), pp. 32-41.
7. Naumova E.V., Prints V.Ya, Golod S.V., Seleznev V.A., Seyfi V.A., Kubarev V.V. Kiral'nye metamaterialy na osnove pretsizionnykh metall-poluprovodnikovykh spiraley [Chiral metamaterials based on precise metal-semiconductor helices], Tezisy dokladov IX Rossiyskaya konferentsiya po fizike poluprovodnikov: Poluprovodniki’09", Novosibirsk-Tomsk, 28 sent.-3 okt. 2009 [Abstracts of IX Russian conference on semiconductor physics: Semiconductors’09", Novosibirsk-Tomsk, 28 Sept.-3 Oct. 2009], pp. 290.
8. Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C. Schultz S. Composite Medium with Simultaneously Negative Permeability and Permittivity, Physical Review Letters, 2000,
Vol. 84 (18), pp. 4184.
9. Marques R., Martin F., Sorolla M. Metamaterials with Negative Parameters: Theory, Design and Microwave Applications. Wiley Series in Microwave and Optical Engineering. Wiley-Blackwell, an imprint of John Wiley & Sons Ltd., 2008, 315 p.
10. Vendik I.B., Vendik O.G., Odit M.A. Theory and Phenomena of Metamaterials, Metamaterial Handbook, Ed. by F. Cappolino. CRC Press, Taylor & Francis Group, 2009, pp. 21-32.
11. Wu B.I., Wang W., Pacheco J., Chen X., Grzegorczyk T., Kong J.A. An study of using Metamaterials as antenna substrate to enhance gain, Progress in Electromagnetics Research, PIER, 2005, Vol. 51, pp. 295-328.
12. Pendry J.B., Schurig D.,Smith D.R. Controlling Electromagnetic Fields, Science, 2006,
Vol. 312, No. 1780.
13. Lou R. K. M., Aribi T., Ghobadi C. Improvement of Characteristics of Microstrip Antenna Using of Metamaterial Superstrate, International Conference on Communication Engineering, 2010, pp. 126-129.
14. Garg B., Agrawal N., Sharma V., Tomar A., Dubey P. Rectangular Microstrip Patch Antenna with Pentagonal Rings Shaped Metamaterial Cover, International Conference on Communica-tion System and Network Technologies IEEE, 2012, pp. 40-44.
15. Smith D.R., Padilla W.J., Vier D.C. Composite medium with simultaneously negative permea-bility and permittivity, Phys. Rev. Lett., 2000, Vol. 84, pp. 4184-4187.
16. Li L.W., Li Y.N., Yeo T.S., Mosig J.R., Martin O.J.F. An broadband and high-gain metamaterial microstrip antenna, Applied Phys. Lett., 2010, Vol. 96, No. 164101.
17. Zhu J., Eleftheriades G.V. Dual-band metamaterial-inspired small monopole antenna for WiFi applications, Electronic Letters, 2009, Vol. 45, Issue 22, pp. 1104-1106.
18. Liang J., Chiau C.C., Chen X., Parini C.G. Printed circular disc monopole antenna for ultrawideband applications, Electronic Letters, 2004, Vol. 40, Issue 20, pp. 1246-1247.
19. Pandeeswari R., Raghavan Dr.S., Bagde P.A., Chittipothul A.K. An Compact Multi-Split Ring Resonator Loaded Antenna, International Conference on Communication and Signal Pro-cessing, IEEE, 2013, pp. 807-810.
20. Dwivedi S., Mishra V., Kosta Y. Metamaterial inspired patch antenna miniaturization technique for satellite, International Conference on Emerging Technology Trends in Electronics, Com-munication and Networking, IEEE, 2012.
21. Ha J., Kwon K., Lee Y., Choi J. Hybrid Mode Wideband Patch Antenna Loaded With a Planar Metamaterial Unit Cell, IEEE Transactions on Antennas and Propagation, 2012, Vol. 60, No. 2, pp. 1143-1147.
22. Cao W., Xiang Y., Zhang B., Liu A., Yu T., Guo D. An Low-Cost Compact Patch Antenna With Beam Steering Based on CSRR-Loaded Ground, IEEE Antennas and Wireless Propagation Letters, 2011, Vol. 10, pp. 1520-1523.
23. Bilotti F., Alú A., Vegni L. Design of Miniaturized Metamaterial Patch Antennas With muNegative Loading, IEEE Transactions on Antennas and Propagation, 2008, Vol. 56, No. 6. – P. 1640- 1647.
24. Antoniades M.A., Eleftheriades G.V. An Broadband Dual-Mode Moopole Antenna using
NRI-TL Metamaterial Loading, Antennas and Wireless Propagation Letters, IEEE, 2009,
Vol. 8, pp. 258-261.
25. Palandoken M., Grede A., Henke H. Broadband Microstrip Antenna with Left-Handed Metamaterials, IEEE Transactions on Antennas and Propagation, 2009, Vol. 57, No. 2,
pp. 331-338.
26. Wang L., Wang L., Li J. L.-W. An Series-Fed Metamaterial Microstrip Antenna Array of Broadband and High-Gain, IWEM Proceedings, IEEE, 2012.

Comments are closed.