Authors A.R. Gaiduk, M.Yu. Medvedev, E.A. Plaksienko
Month, Year 06, 2017 @en
Index UDC 519.71
Abstract Now there are many methods of automatic control systems design, however the majority of them are iterative. As a consequence, design of control systems with necessary performances is accompanied by significant expenses of time. The purpose of this report is to represent the method of analytical design of automation systems with control on output and impacts which allows over-coming the specified difficulty. The designed system has partially given structure, desirable per-formance, lowered dimension and increased robustness. Parameters of a controller are the solu-tions of the linear algebraic equations systems. Standard transfer functions are used for mainte-nance of the desirable quality parameters such as: the astatic orders to reference input and external disturbances; overshoot and time response. The resolvability conditions of the task of the analytical design of automatic control systems, with desirable transfer functions are resulted. These functions are formed according to the required designed automatic control system quality. Increase of robustness is achieved by inclusion of a part of its poles and zeros into the roots of the closed system characteristic polynomial of the automation control systems. The suggested method of analytical design can be applied for creation of the multivariable control systems by technical and moving plants. Efficiency of the analytical design method of the control automation systems are shown on the numerical examples. These methods can be used for creation of the automation control systems with less complex, but more robust for plants of chemical, textile, food and other branches of production and also at creation of systems of special assignment.

Download PDF

Keywords Plant; control system; design; standard transfer functions; technical pant; performance; astatic; invariant; reduction; robustness.
References 1. Mochida T., Nonaka N., Tanaka Y.A. A computer-aided system for designing a pump-impeller, Proceedings of ICAIS’2002 Congress on Autonomous Intelligent systems, 2002, pp. 128-134.
2. Pshikhopov V.Kh., Medvedev M.Yu., Gaiduk A.R. Control method for vehicles on base of natural energy recovery, Applied Mechanics and Materials, 2013, Vol. 670-671, pp. 1330-1336. doi:10.4028/www.scientific.
3. Gayduk A.R. Absolyutno invariantnoe upravlenie energeticheskoy ustanovkoy letatel'nogo apparata [Absolutely invariant control power plant of the aircraft], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, Automation, Control], 2010, No. 11, pp. 65-68.
4. Pshikhopov V.Kh., Medvedev M.Yu. Dynamic control of micro robots with state and parameters estimation, Proc. of the Second International Workshop on Microfactories (IMWF-2000). Fribourg, Switzerland, 2000, pp. 145-149.
5. Gaiduk A.R., Vershinin Yu.A. Computer aided optimal system design, Proc. of IEEE Conference CACSD-2002, Glasgow, UK, 2002, pp. 471-477.
6. Preitl S., Precup R.E. An extension of tuning relations after symmetrical optimum method for PI and PID controllers, Avtomatica, 1999, Vol. 35, pp. 1731-1736.
7. Ali M.Y., Mohamed Z., Ghareeb M. Improved power system stabilizer by applying LQG con-troller, WSEAS Trans. on systems and control, 2014, Vol. 9, art. No. 41, pp. 398-404. ISSN/E-ISSN: 1991-8763/2224-2856.
8. Filimonov N.B. Problema kachestva protsessov upravleniya: smena optimizatsionnoy paradigmy [The quality problem of control processes: the change of optimization paradigm], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, Automation, Control], 2010,
No. 12, pp. 2-10.
9. Tyutikov V.V., Tararykin S.V. Robastnoe modal'noe upravlenie tekhnologicheskimi ob"ektami [Robust modal control of technological objects]. Ivanovo, 2006. ISBN 5-89482-390-0.
10. Filimonov A.V., Filimonov N.B. Kontseptsiya problemy nerobastnosti spektra v zadache modal'nogo upravleniya [The concept of the problem of probastat spectrum in the problem of modal control], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, Automation, Con-trol], 2011, No. 10, pp. 8-13.
11. Gayduk A.R. Teoriya i metody analiticheskogo sinteza sistem avtomaticheskogo upravleniya [Theory and methods of analytical synthesis of automatic control systems]. Moscow: Fizmatlit, 2012, 360 p.
12. Gayduk A.R. Sintez sistem avtomaticheskogo upravleniya po peredatochnym funktsiyam [Syn-thesis of automatic control systems by transfer functions], Avtomatika i telemekhanika [Auto-mation and remote control], 1980, Vol. 41, No. 1, pp. 8-13.
13. Neydorf R.A., Sashenko D.S. Parametricheskiy sintez zakonov upravleniya na osnove obobshchennykh kornevykh ogranicheniy [Parametric synthesis of control laws on the basis of the generalized root restriction], Trudy Mezhdunarodnoy nauchnoy konferentsii «Matematicheskie metody v tekhnike i tekhnologiyakh MMTT-16» [Proceedings of International scientific conference "Mathematical methods in technics and technologies mmtt-16"]. Saint-Petersburg, 2003, Vol. 2, pp. 67-69.
14. Plaksienko E.A., Gayduk A.R. Sintez dinamicheskikh sistem po trebuemym pokazatelyam kachestva [Synthesis of dynamical systems on required quality indicators], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, Automation, Control], 2008, No. 4, pp. 7-12.
15. Gaiduk A.R. Stojković N.M. Formation of Transfer Function for Control Systems under Im-plementation Conditions, FACTA UNIVERSITATIS, Series: Automatic Control and Robotics, 2014, Vol. 13, No. 1, pp. 15-25.
16. Tsypkin Ya.Z. Teoreticheskie osnovy avtomaticheskikh system [Theoretical bases of automatic systems]. Moscow: Nauka, 1977, 560 p.
17. Chen С.T. Linear system theory and design. Oxford university press, 1999.
18. Besekerskiy V.A., Popov V.A. Teoriya sistem avtomaticheskogo upravleniya [The theory of automatic control systems.]. Saint Petersburg: Professiya, 2004.
19. Kwakernaak H., Sivan R. Linear optimal control systems. New York, Wiley Interscience, 1972.
20. Babak S.F., Vasil'ev V.I., Il'yasov B.G. Osnovy teorii mnogomernykh sistem upravleniya letatel'nykh apparatov: ucheb. posobie [Fundamentals of the theory of multidimensional control systems of flying machines: textbook]. Moscow: Izd-vo MAI, 1995.
21. Tararykin S.V., Apolonskiy V.V. Metody sinteza redutsirovannykh dinamicheskikh sistem upravleniya [Methods of synthesis of reduced dynamical control systems], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, Automation, Control], 2015, No. 16, pp. 75-80.
22. Polyak B.T., Shcherbakov P.S. Robastnaya ustoychivost' i upravlenie [Robust stability and control]. Moscow: Nauka, 2002, 303 p.
26. Glover K. All optimal Hankel norm approximation of linear multivariable systems and their -error bounds, International Journal Control, 1984, Vol. 39, No. 6, pp. 1145-1193.
27. Safonov M.G., Chiang R.Y., Limebeer D.J.N. Optimal Hankel Model Reduction for Nonminimal Systems, IEEE Transaction on Automation Control, 1990, Vol. 35, No. 4, pp. 496-502.
23. Gayduk A.R., Plaksienko E.A. Robastnost' redutsirovannykh dinamicheskikh sistem avtomatizatsii [The robustness of the reduced dynamic automation systems], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, Automation, Control], 2016, Vol. 17, No. 5,
pp. 308-315. DOI: 10.17587/mau/16.308-315.

Comments are closed.