Authors V. I. Kaevitser, A. P. Krivtsov, I. V. Smolyaninov, A. V. Elbakidze
Month, Year 08, 2017 @en
Index UDC 551.463.621.391
DOI 10.23683/2311-3103-2017-8-6-16
Abstract To solve the problems of informatization of Arctic regions, development of hydrocarbon fields, provision of navigation along the Northern Sea Route, and protection of state borders, one of the important directions is the creation of domestic means of illuminating the underwater situation, mapping the bottom and bottom sediments. The manifestations of global warming in the Arctic, in recent years, have led to a significant improvement in the ice situation and the possibility of carrying out hydrographic work with significantly lower costs. It required the creation of domestic sonar systems for the equipment of research vessels. The article reviews the experience of development in the Kotel"nikov FIRE RAS of sonar systems possessing high power and noise immunity when using complex probing signals (linear frequency modulation) and optimal methods for processing echoes. The developed sonar system AGPS-200 has been successfully used for studying and monitoring the seabed in the implementation of the “Polarnet” project in the difficult ice conditions of the Arctic. Based on the obtained experience, an experimental device of the small-size sonar system AGPS-300 "Kedr" has been developed and created to solve the task. The system combines an interferometric and amplitude sonar, a high-frequency echo sounder and a low-frequency profiler with a single control driver, one recording computer. In this case, the probing pulses of all systems are radiated simultaneously, which reduces the effect of the instruments on each other, providing electrical and acoustic compatibility. The examples of practical application of the small-sized multifunctional sonar system of the new generation AGKPS 300 "Kedr" on three-dimensional acoustic mapping of the seabed in the Barents Sea at depths of 200-300 meters are given. An area with a large number of gas outlets marked with pockmarks has been discovered. A scientific interpretation of these manifestations from the point of view of the geological and tectonic structure of the bottom of the given area has been carried out. The prospectivity of using the developed sonar system and software and hardware to ensure scientific and engineering research of the bottom on the shelf, including the Arctic seas, have been confirmed.

Download PDF

Keywords Sonar systems; multibeam echosounder; interferometric side scan sonar; sea floor bathymetry; sub bottom profiling; digital signal processing; pockmarks.
References 1. Kaevitser V.I., Malov O.V., Raskatov V.N. Opyt proektirovaniya i izyskaniy v Arktike [Experience in design and research in the Arctic], Vestnik svyazi [Herald communications], 2009,
No. 10, pp. 79-80.
2. Kaevitser V.I., Malov O.V., Raskatov V.N. Opyt proektirovaniya i izyskaniy v Arktike [Experience in design and research in the Arctic], Vestnik svyazi [Herald communications], 2009,
No. 11, pp. 45-55.
3. Kaevitser V.I., Razmanov V.M. Distantsionnoe zondirovanie morskogo dna gidrolokatsionnymi sistemami so slozhnymi signalami [Remote sensing of sea bottom by hydroacoustic systems with complex signals], UFN [Advances in Physical Sciences], 2009, Vol. 179, No. 2, pp. 218-224.
4. Kaevitser V.I., Razmanov V.M., Zakharov A.I. Analysis of Sea Bottom Relief Details by Means of Interferometric Side Scan Sonar AGKPS-300: North Atlantic Treaty Organization, Science and Technology Organization, 2004. Available at: publica-tions/STO%20Meeting%20Proceedings/RTO-MP-SET-079/MP-SET-079-30.pdf.
5. Kaevitser V.I., Razmanov V.M., Krivtsov A.P., Smol'yaninov I.V., Dolotov S.A. Distantsionnoe zondirovanie morskogo dna akusticheskimi signalami s lineynoy chastotnoy modulyatsiey [Remote Acoustic Sounding of Sea Bottom with Using Linear-Frequency Modulated (Chirp) Signals], Radiotekhnika [Radioengineering], 2008, No. 8, pp. 35-42.
6. Kaevitser V.I., Razmanov V.M., Smol'yaninov I.V., Elbakidze A.V. Akusticheskie issledovaniya morskogo dna s ispol'zovaniem signalov s lineynoy chastotnoy modulyatsiey [Acoustic studies of the seabottom using chirp signals], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 9 (146), pp. 81-85.
7. Dolotov S.A., Kaevitser V.I., Krivtsov A.P., Razmanov V.M., Smol'yaninov I.V. Primenenie interferometricheskogo GBO s LChM zondiruyushchim signalom dlya issledovaniya morskogo dna [The use of interferometric side-scan sonar with chirp probing signal for studying the seabed], Izvestiya TRTU [Izvestiya SFedU. TSURE], 2004, No. 5 (40), pp. 268-273.
8. Dolotov S.A., Kaevitser V.I., Razmanov V.M., Smol'yaninov I.V., Savorskiy A.V. Primenenie nizkochastotnogo ekholota-profilografa s mnogoelementnoy izluchayushchey antennoy i shirokopolosnym LChM signalom dlya issledovaniya morskogo dna [The use of low frequency sonar – profiler with multi-element antenna and wideband chirp signal for studying the seabed], Izvestiya TRTU [Izvestiya SFedU. TSURE], 2004, No. 5 (40), pp. 273-279.
9. Kaevitser V.I., Razmanov V.M., Elbakidze A.V., Smol'yaninov I.V. Nekotorye rezul'taty issledovaniya kharakteristik akusticheskikh signalov nizkochastotnogo LChM profilografa [Some results of acoustic signals characteristics investigation of low frequency LFM-Profiler], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2009, No. 6 (95), pp. 115-123.
10. Kaevitser V.I., Rimskiy-Korsakov N.A., Smol'yaninov I.V., Razmanov V.M., Krivtsov A.P. Vozmozhnye proyavleniya podvodnykh gryazevykh vulkanov po rezul'tatam gidrolokatsion-nykh issledovaniy v akvatorii Tamanskogo poluostrova [Possible Manifestations of Underwater Mud Volcanoes Based on Results of Sonar Investigations in Region of Taman Peninsula], Okeanologiya [Oceanology], 2016, Vol. 56, No. 5, pp. 784-790.
11. Kaevitser V.I., Slovtsov I.B., Krivtsov A.P., Razmanov V.M., Smol'yaninov I.V., Elbakidze A.V. Podvodnye gryazevye vulkany Tamanskogo poluostrova po dannym gidrolokatsionnogo issledovaniya [Underwater mud volcanoes of the Taman Peninsula, according to sonar research], Vulkanologiya i seysmologiya [Volcanology and seismology], 2016, No. 4, pp. 27-33.
12. Kaevitser V.I., Krivtsov A.P., Razmanov V.M., Smol'yaninov I.V., Elbakidze A.V., Denisov E.Yu. Razrabotka i rezul'taty ispytaniy gidroakusticheskogo kompleksa dlya issledovaniya dna shel'fovoy zony Arkticheskikh morey [Development and test results of hydroacoustic system for studying the bottom of the shelf zone of the Arctic seas], Zhurnal radioelektroniki [Journal of radio electronics], 2016, No. 11. Available at:
13. Krivtsov A.P., Smol'yaninov I.V., Elbakidze A.V., Stepanov A.V. Otsenka skhodimosti glubin pri ploshchadnoy s"emke rel'efa dna mnogoluchevym ekholotom i interferometricheskim gidrolokatorom bokovogo obzora [Evaluation of convergence of the areal depth when shooting bottom relief multibeam echo sounder and interferometric side-scan sonar], Zhurnal radioelektroniki [Journal of radio electronics], 2017, No. 4. Available at:
14. Krivtsov A.P. Programma vychisleniya glubin i postroeniya rel'efa dna dlya interferometricheskogo gidrolokatora bokovogo obzora [The program for calculation of the depths and building the bottom topography for interferometric side-scan sonar], Svidetel'stvo o gosudarstvennoy regi-stratsii programmy dlya EVM № 2015610922 [The certificate of state registration of computer programs № 2015610922].
15. Zonenshayn L.P., Neprochnov Yu.P. Geologo-geofizicheskaya kharakteristika osnovnykh tektonicheskikh struktur [Geological and geophysical characteristics major tectonic structures], V kn. Okeanologiya. Geofizika okeana T. 1. Geofizika okeanskogo dna [In the book. Oceanog-raphy. Geophysics of the ocean. Vol. 1. Geophysics of the ocean floor], pp. 409-435.
16. Elbakidze A.V., Razmanov V.M., Smol'yaninov I.V., Krivtsov A.P., Denisov E.Yu. Mnogo-funktsional'nyy gidrolokatsionnyy kompleks dlya issledovaniya morskogo dna [Multifunction sonar system for seabed survey], VIII Vserossiyskaya konferentsiya «Radiolokatsiya i radiosvyaz'», trudy konferentsii [VIII all-Russian conference "Radar and radio communication": proceedings of the conference]. Moscow, 2016, pp. 227-231.
17. Kaevitser V.I., Krivtsov A.P., Razmanov V.M., Smol'yaninov I.V., Elbakidze A.V., Denisov E.Yu. Rezul'taty primeneniya mnogofunktsional'nogo gidrolokatsionnogo kompleksa s LChM signalami pri inzhenernykh obsledovaniyakh podvodnykh sooruzheniy [The results of applying the multifunctional complex sonar with chirp signals in engineering surveys, underwater construction], XIII Vserossiyskaya konferentsiya “Prikladnye tekhnologii gidroakustiki i gidrofiziki (GA-2016)” [XIII all-Russian conference “Applied technologies of hydroacoustics and Hydrophysics (HA-2016)]. Saint Petesburg, 2016, pp. 126-129.
18. Red'kin P.P. 32/16-bitnye mikrokontrollery ARM7 semeystva AT91SAM7 firmy Atmel [32/16-bit microcontroller family ARM7 AT91SAM7 Atmel]. Moscow, 2008, 704 p.
19. Steshenko V. PLIS firmy ALTERA: elementnaya baza, sistema proektirovaniya i yazyki opisaniya apparatury [FPGA ALTERA: element base, system design languages and hardware description]. Moscow: DMK Press, 2015, 576 p.
20. Kaevitser V.I., Krivtsov A.P., Razmanov V.M., Smol'yaninov I.V., Elbakidze A.V., Denisov E.Yu. Distantsionno upravlyaemyy kater s gidrolokatorom bokovogo obzora dlya kartografirovaniya dna malykh vodoemov [A remote-controlled boat with side-scan sonar for mapping the bottom of small ponds], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, No. 10 (183), pp. 80-91.
21. Logvina E.A., Matveeva T.V., Gladysh V.A., Krylov A.A. Kompleksnye issledovaniya pokmarkov na chukotskom plato [A comprehensive study pockmarks on the Chukchi plateau], Problemy Arktiki i Antarktiki [Problems of Arctic and Antarctic], 2011, No. 2 (88), pp. 45-54.

Comments are closed.