Article

Article title ACCOUNTING OF RISK SITUATIONS IN MODELING THE PROCESS DESIGNING COMPLEX CONTROL SYSTEMS BASED ON COGNITIVE MODELS
Authors V. V. Korobkin, A. E. Kolodenkova, A. P. Kuharenko
Section SECTION II. DESIGNING MANAGEMENT INFORMATION AND AUTOMATED SYSTEMS
Month, Year 09, 2017 @en
Index UDC 004.054; 519.81
DOI
Abstract The process of designing complex control systems (CCS) is a complex iterative process characterized by large capital investments, significant resource outlays (financial, labor, time), a multitude of emerging risk situations, and a large number of numerous documentation. To identify risk situations during the design phase of the CCS, it is proposed to apply a systematic approach aimed at revealing the integrity of the design process, identifying its complex relationships, and accumulating information about system properties in all sub-stages of the CCS design phase. We propose a generalized model of the CCS design process, presented in the form of a connection of the so-called "triads" and allows us to systematically organize the researches of performers, and also to comprehend the algorithms, methods and models used (cognitive, functional, process). Systematic approach to identifying and analyzing risk situations in the design phase involves the implementation of a number of CCS basic principles (system-wide, management and simulation). These principles allow us to formulate, from a single theoretical point of view, various tasks related to the analysis of risk situations using the methodology of cognitive and fuzzy cognitive modeling and to determine how to solve them. To construct and analyze the structures of clear and fuzzy cognitive models, it is suggested to use the generalized scheme of the methodology of cognitive and fuzzy cognitive modeling, consisting of seven stages. The application of this approach makes it possible to identify, analyze factors and their interactions, investigate possible scenarios for the emergence of risk situations at the stage of CCS design, and find ways to resolve them in model situations. All this makes it possible to develop scientifically sound management decisions aimed at forecasting and preventing situations that lead to a critical nonconformity of the CCS with the stated goals and requirements of the customer.

Download PDF

Keywords Systems approach; complex control system; risk situations; design; cognitive modeling.
References 1. GOST R 15.000-2016. Sistema razrabotki i postanovki produktsii na proizvodstvo (SRPP). Osnovnye polozheniya [System development and launching products to the production (SRPP). The main provisions]. Moscow: Standartinform, 2016.
2. Yurkov N.K. Sistemnyy podkhod k organizatsii zhiznennogo tsikla slozhnykh tekhnicheskikh sistem [A systematic approach to the organization of the life cycle of complex technical systems], Nadezhnost' i kachestvo slozhnykh system [Reliability and quality of complex systems], 2013, No. 1, pp. 27-35.
3. Kovalev S.P. Teoretiko-kategoriynye modeli i metody proektirovaniya bol'shikh in-formatsionno-upravlyayushchikh sistem: avtoref. diss. … d-ra fiz.-mat. nauk [Theoretical-categorical models and methods of design of large management information systems: autoabstract dr. of phys.-math. sc. diss.]. Moscow: IPU RAN, 2013, 32 p.
4. Semenov S.S. Osnovnye polozheniya sistemnogo analiza pri otsenke tekhnicheskogo urovnya slozhnykh sistem s primeneniem ekspertnogo metoda [Main provisions of the system of analysis when assessing technical level of complex systems using expert method], Nadezhnost' i kachestvo slozhnykh system [Reliability and quality of complex systems], 2013, No. 4, pp. 45-53.
5. Guzairov M.B., Il'yasov B.G., Gerasimova I.B. Sistemnyy podkhod k analizu slozhnykh sistem i protsessov na osnove triad [A systematic approach to the analysis of complex systems and processes on the basis of triads], Problemy upravleniya [Control Sciences], 2007, No. 5,
pp. 32-38.
6. Il'yasov B.G., Makarova E.A. Problemy i kontseptual'nye osnovy sistemnogo analiza i modelirovaniya vosproizvodstvennogo protsessa na makrourovne s uchetom vzaimodeystviya potokov i zapasov [Issues and conceptual framework of system analysis and modelling of the reproductive process at the macro level, accounting for the interaction of flows and stocks], Strategii biznesa [Business strategy], 2013, No. 2 (2), pp. 50-56.
7. Krioni N.K., Kolodenkova A.E., Korobkin V.V., Gubanov N.G. Intelligent decision-making support system using cognitive modeling for project feasibility assessment on creating complex technical systems, International Journal of Applied Business and Economic Research, 2016, Vol. 14, No. 10, pp. 7289-7300.
8. Roberts F. Graph Theory and its applications to problems of society, society for industrial and applied mathematics. Philadelphia, 1978, 116 p.
9. Roberts F.S. Diskretnye matematicheskie modeli s prilozheniyami k sotsial'nym, biologicheskim i ekologicheskim zadacham [Discrete mathematical models with applications to social, biological and environmental problems]. Moscow: Nauka, 1986, 496 p.
10. Dickerson J., Kosko B. Virtual worlds as fuzzy dynamic system, Technology for multimedia. New York, IEEE Press, 1998. pp. 567-603.
11. Koulouriotis D.E., Diakoulakis I.E., Emiris D.M. Learning fuzzy cognitive maps using evolution strategies: a novel schema for modeling a simulating high-level behavior, Proceedings of IEEE Congress on Evolutionary Computation, Seoul, Korea, 2001, Vol. 1, pp. 364-371.
12. Gorelova G.V. Kognitivnyy podkhod k imitatsionnomu modelirovaniyu slozhnykh sistem
[A cognitive approach for modeling complex systems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 3 (140), pp. 239-250.
13. Gorelova G.V., Kolodenkova A.E. Vyyavlenie riskov na etape predproektnogo issledovaniya pri razrabotke intellektual'nykh informatsionno-upravlyayushchikh sistem tekhnicheskikh ob"ektov na osnove kognitivnogo modelirovaniya [Identifying risks at the stage of exploratory research in the development of intelligent information-control systems of technical objects on the basis of cognitive modeling], Kongress po intellektual'nym sistemam i informatsionnym tekhnologiyam «IS&IT'15»: Tr. Kongressa [Congress on intellectual systems and information technologies "IS&IT'15": proceedings of the Congress]. Taganrog: YuFU, 2015, Vol. 2,
pp. 236-242.
14. Kasti Dzh. Bol'shie sistemy: svyaznost', slozhnost' i katastrofy [Large systems: connectivity, complexity and catastrophe]. Moscow: Mir, 1982, 216 p.
15. Kul'ba V.V., Kononov D.A., Kovalevskiy S.S. Stsenarnyy analiz dinamiki povedeniya sotsial'no-ekonomicheskikh system [Scenario analysis the dynamics of behaviour of socio-economic systems]. Moscow: IPU RAN, 2002, 22 p.
16. Gorelova G.V., Zakharova E.N., Radchenko S.A. Issledovanie slabostrukturirovannykh problem sotsial'no-ekonomicheskikh sistem: kognitivnyy podkhod [The study semi-structured socio-economic systems: a cognitive approach]. Rostov-on-Don: RGU, 2006, 332 p.
17. Sadovnikova N.P., Zhidkova N.P. Vybor strategiy territorial'nogo razvitiya na osnove kognitivnogo analiza i stsenarnogo modelirovaniya [The choice of strategies of territorial development on the basis of cognitive analysis and scenario modeling], Internet-vestnik VolgGASU. Ser.: Stroit. Informatika [Internet-Vestnik VolgGASU. Series: Construction Informatics], 2012, Issue 7 (21). Available at: www.vestnik.vgasu.ru.
18. Novichikhin A.V., Ulankin A.N. Metodicheskie osobennosti proektnogo programmirovaniya razvitiya predpriyatiy resursnogo regiona (na primere ugol'noy otrasli) [Methodical peculiarities of project programming enterprise development resource of region (on example of the coal industry)]. Available at: http://www.giab-online.ru/files/Data/2011/3/ Novichihin_3_2011.pdf.
19. Sholomitskiy A.G. Teoriya riska. Vybor pri neopredelennosti i modelirovanie riska [The theory of risk. Choice under uncertainty and risk modeling]. Moscow: Vysshaya shkola, 2005.
20. Kovalev S.P. Povyshenie effektivnosti protsessov proektirovaniya bol'shikh informatsionno-upravlyayushchikh sistem [Improving the efficiency of processes of design of large information management systems], XII Vserossiyskoe soveshchanie po problemam upravleniya VSPU-2014 [XII all-Russian meeting on control problems VCPU-2014]. Moscow, 2014, pp. 9291-9300.
21. Kuznetsov O.P. Kognitivnoe modelirovanie slabo strukturirovannykh situatsiy [Cognitive modeling of weakly structured situations]. Available at: http://posp.raai.org/data/posp2005/Kuznetsov/ kuznetsov.html.

Comments are closed.