Article

Article title A METHOD OF COORDINATING THE BEHAVIOR OF AUTONOMOUS UNDERWATER VEHICLES GROUP ON A MULTI-AGENT BASIS IN THE CONDUCT OF THE SEISMIC SURVEY
Authors L. A. Martynova, O. V. Karsaev
Section SECTION II. SYSTEMS OF CONTROL AND MODELING
Month, Year 01, 2018 @en
Index UDC 519.87
DOI
Abstract The paper discusses the method for performing a seismic prospecting of the seabed, the base of that is teamwork of autonomous unmanned underwater vehicle group. To organize teamwork it is considered a multiagent model of autonomous behavior and information interaction of vehicles in the group. Vehicles consistently perform heterogeneous functions associated with moving to a new position, diving depth, attachment to the seabed, determination of current location, listening to the reflected from the seabed seismic signal, ascent to the specified depth for further movement. Failure of some vehicles leads to a decrease in the quality of seismic prospecting results and appropriate rearrangement of all other vehicles remaining in working condition is required to compensation for the decline of quality. The peculiarity of the rearrangement is, on the one hand, to maintain the coordination of the behavior of the remaining vehicles of the group, and, on the other hand, the redistribution of heterogeneous functions between vehicles. The implementation of such a rearrangement requires a corresponding interaction between vehicles in the group. This interaction is the main subject of research in the paper. At that different approaches to the organization of the interaction scheme are considered: single-level (peer-to-peer) and hierarchical (in this case two-level) approaches. The second approach involves the definition and redefinition of agents (vehicles) that play the role of leaders in subgroups (rows) vehicles. Leaders provide information interaction both within subgroups (rows) and between subgroups (rows). The choice of the rearrangement scheme is based on minimization of efficiency decrease in case of failure of one or several vehicles. A mathematical simulation model was developed for testing the proposed solutions. For the numerical experiments it is considered the options, characterized by different positions and by different quantity of failure vehicles. For the different variants a communication vehicles in the group were simulated. Numerical experiments carried out using this model confirm the effectiveness of the proposed solutions.

Download PDF

Keywords Multiagent system; autonomous unmanned underwater vehicle; seismic prospecting; efficiency; mathematical simulation.
References 1. Ageev M.D. i dr. Avtonomnye podvodnye roboty. Sistemy i tekhnologii [Autonomous underwater robots. Systems and technologies]. Moscow: Nauka, 2005, 400 p.
2. Inzartsev A.V. i dr. Primenenie avtonomnogo neobitaemogo podvodnogo apparata dlya nauchnykh issledovaniy v Arktike [Application of an Autonomous unmanned underwater vehicle for scientific research in the Arctic], Podvodnye issledovaniya i robototekhnika [Underwater research and robotics], 2007, No. 2 (4), pp. 5-14.
3. Gizitdinova M.R., Kuz'mitskiy M.A. Mobil'nye podvodnye roboty v sovremennoy okeanografii i gidrofizike [Mobile underwater robots in modern Oceanography and Hydrophysics], Fundamental'naya i prikladnaya gidrofizika [Fundamental and applied Hydrophysics], 2010, Vol. 3, No. 1, pp. 4-13.
4. Bozhenov Yu.A. Ispol'zovanie avtonomnykh neobitaemykh podvodnykh apparatov dlya issledovaniya Arktiki i Antarktiki [The use of Autonomous unmanned underwater vehicles for Arctic and Antarctic research], Fundamental'naya i prikladnaya gidrofizika [Fundamental and applied Hydrophysics], 2011, Vol. 4, No. 1, pp. 4-68.
5. Millar G., Mackay L. Maneuvering under the ice, Sea technology, 2015, Vol. 56, No. 4,
pp. 35-38.
6. Illarionov G.Yu., Sidenko K.S., Bocharov L.Yu. Ugroza iz glubiny: XXI vek [Threat from the depths: the XXI century]. Khabarovsk: KGUP "Khabarovskaya kraevaya tipografiya", 2011, 304 p.
7. Martynova L.A. Metod soglasovannogo povedeniya izluchatelya i avtonomnykh neobitaemykh podvodnykh apparatov dlya effektivnogo vedeniya seysmorazvedki [The method consistent behavior of the emitter and Autonomous unmanned underwater vehicles for the efficient conduct of seismic data], Informatsionno-upravlyayushchie sistemy [Information and control systems], 2017, No. 1 (86), pp. 83-92.
8. Kurzhanskiy A.B. Zadacha o nestolknoveniyakh pri gruppovom dvizhenii v usloviyakh prepyatstviy [The problem of netaknute for group movement in terms of obstacles], Tr. Instituta matematiki i mekhaniki RAN [Proceedings of Institute of mathematics and mechanics Russian Academy of Sciences], 2015, Vol. 21, No. 2, pp. 132-147.
9. Kurzhanskiy A.B. O zadache gruppovogo upravleniya v usloviyakh prepyatstviy [The task of group management in terms of obstacles], Tr. Instituta matematiki i mekhaniki RAN [Proceedings of Institute of mathematics and mechanics Russian Academy of Sciences], 2014, Vol. 20, No. 3, pp. 166-179.
10. Kurzhanskiy A.B., Mesyats A.I. Matematicheskie zadachi gruppovogo upravleniya: teoriya i vychisleniya [Mathematical problems of group management: theory and computation], Materialy 4-oy Vserossiyskoy nauchno-tekhnicheskoy konferentsii «Superkomp'yuternye tekhnologii (STK-2016) 19-24 sentyabrya 2016 s. Divnomorskoe Gelendzhik [Proceedings of 4-th all-Russian scientific-technical conference "Supercomputer technologies (STK-2016) September 19-24, 2016 p. Divnomorskoe, Gelendzhik]. Rostov-on-Don: Izd-vo YuFU, 2016, pp. 44-47.
11. Gorodetskiy V.I., Grushinskiy M.S., Khabalov A.V. Mnogoagentnye sistemy (obzor) [Multi-agent systems (review)], Novosti iskusstvennogo intellekta [Artificial intelligence news], 1998, No. 2, pp. 64-116.
12. Budaev D.S., Voshchuk G.Yu., Gusev N.A., Mayorov I.V., Mochalkin A.N. Razrabotka sistemy soglasovannogo upravleniya gruppoy bespilotnykh apparatov s primeneniem mul'tiagentnykh tekhnologiy [Development of a system of coordinated control of group of unmanned vehicles applying multi-agent technology], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 10 (171), pp. 18-28.
13. Gorodetskiy V.I., Karsaev O.V., Samoylov V.V., Serebryakov S.V. Prikladnye mnogo-agentnye sistemy gruppovogo upravleniya [Applied multi-agent group control systems], Iskusstvennyy intellekt i prinyatie resheniy [Artificial intelligence and decision-making], 2009, No. 2, pp. 3-24.
14. Mashoshin A.I., Skobelev P.O. Primenenie mul'tiagentnykh tekhnologiy k upravleniyu gruppoy avtonomnykh neobitaemykh podvodnykh apparatov [Application of multi-agent technologies to the management of a group of Autonomous unmanned underwater vehicles], 11-ya Vserossiyskaya nauchno-prakticheskaya konferentsiya «Perspektivnye sistemy i zadachi upravleniya», 4-8 aprelya 2016 g., Krym, Evpatoriya [11th all-Russian scientific and practical conference "Perspective systems and control tasks", April 4-8, 2016, Crimea, Evpatoria.].
15. Kozhemyakin I.V., Nikushchenko D.V., Ryzhov V.A., Semenov N.N., Chemodanov M.N. Razvitie sistemy avtonomnogo gruppovogo upravleniya raznorodnymi nadvodnymi i podvodnymi neobitaemymi apparatami [Development of the system of Autonomous group control of dissimilar surface and underwater uninhabited vehicles], Sed'maya vserossiyskaya nauchno-tekhnicheskaya konferentsiya «Tekhnicheskie problemy osvoeniya mirovogo okeana [Seventh all-Russian scientific and technical conference "Technical problems of development of the world ocean]. Vladivostok, 2017, pp. 48-57.
16. Kozhemyakin I.V., Ryzhov V.A., Semenov N.N., Chemodanov M.N. Mul'tiagentnaya sistema upravleniya gruppoy ANPA s neskol'kimi liderami [Multi-agent control system for the group of ANPA with several leaders], International Conference on Marine Robotics in Ocean Exploration, MarineRobotics2017, October 9-11, 2017, Saint-Petersburg, Russia.
17. Martynova L.A. Instrumentariy dlya issledovaniy effektivnosti vedeniya seysmorazvedki s ispol'zovaniem avtonomnykh neobitaemykh podvodnykh apparatov [Tools for studies on the effectiveness of conducting seismic surveys using Autonomous underwater vehicles], Informatsionno-upravlyayushchie sistemy [Information and control systems], 2017, No. 2 (87), pp. 77-87.
18. Buia M., Flores P.E., Hill D., Palmer E., Ross R., Walker R., Houbiers M., Thompson M., Laura S., Menlikli C., Moldoveanu N., Snyder E. Shooting Seismic Surveys in Circles. https://www.slb.com/~/media/Files/resources/oilfield_review/ors08/aut08/shooting_seismic_surveys_in_circles.pdf.
19. Kebkal K.G., Mashoshin A.I. Gidroakusticheskie metody pozitsionirovaniya avtonomnykh neobitaemykh podvodnykh apparatov [Hydro-acoustic methods of positioning Autonomous unmanned underwater vehicles], Giroskopiya i navigatsiya [Gyroscopy and navigation], 2016, Vol. 24, No. 3 (94), pp. 115-130.
20. Kebkal K.G., Kebkal A.G, Glushko E.V., Kebkal V.K., Sebastio L., Paskual' A., Ribeyro Dzh., Sil'va G. Ribeyro, Indiveri Dzh. Gidroakusticheskie modemy s integrirovannymi tsezievymi chasami dlya zadach podvodnogo pozitsionirovaniya avtonomnykh neobitaemykh podvodnykh apparatov [Hydroacoustic modems with integrated cesium clocks for underwater positioning of Autonomous unmanned underwater vehicles], International Conference on Marine Robotics in Ocean Exploration, MarineRobotics2017, October 9-11, 2017, Saint-Petersburg, Russia.
21. Kebkal O., Komar M., and Kebkal K. D-MAC: Hybrid media access control for underwater acoustic sensor networks, in Proceedings of IEEE Communications Workshops (ICC), IEEE International Conference, Cape Town, South Africa. ISBN: 978-1-4244- 6824-9, 2010.
22. Kebkal K.G., Kebkal A.K., Kebkal O.G., and Bannasch R. Modelling and validation of basic characteristics in underwater acoustic sweep-spread-carrier communications, in Underwater Technology 2015 IEEE, 23–25 Feb. 2015. Doi 10.1109/UT.2015.7108312.
23. Kebkal K. and Bannasch R. Sweep-spread carrier for underwater communication over acoustic channels with strong multipath propagation, Journal of Acoustic Society of America, 2002, Vol. 112 (5), pp. 2043-2052.
24. Kebkal O.G., Kebkal K.G., and KomarM. Development of upper-layer protocols with S2CR acoustic modems emulator, in Proc. Conf. on Underwater Communications: Channel Modelling and Validation, UCOMMS, 12–14 September 2012, Sestri Levante, Italy.
25. Kebkal K., Kebkal O., and Glushko E. Propagation time estimation between underwater acoustic modems during data exchange via synchronous instant messages, in Proceedings of the OCEANS 2014 MTS/IEEE Conference and Exhibition, IEEE, Taipei, Taiwan.
26. Kebkal K.G., Kebkal A.G., Kebkal V.K., and Petroccia R. Synchronization tools of acoustic communication devices in control of underwater sensors, Distributed antennas, and autonomous underwater vehicles, Gyroscopy and Navigation, 2014, Vol. 5 (4), pp. 257-265.
27. Belov B.P., Korotitskiy E.V., Semenov N.N., Setin A.I. Informatsionnoe obespechenie robotov dlya vypolneniya razlichnykh missiy [Information support of robots for various missions], International Conference on Marine Robotics in Ocean Exploration, MarineRobotics2017, October 9-11, 2017, Saint-Petersburg, Russia.

Comments are closed.