Authors V. M. Rulevskiy, V. A. Chekh, V. G. Bukreev, R. V. Mescheryakov
Month, Year 01, 2018 @en
Index UDC 621.311.6
Abstract In this paper we consider various structures of the power supply controllers for remotely operated unmanned underwater vehicles (ROV) with high voltage direct current (HVDC) transmission by strength-power communications (SPC) cable. The application of a power supply for ROV with HVDC transmission improves the weight-size parameters of the underwater part. The task of the highly efficient power supply design for ROV with HVDC transmission is set. We propose to divide the problem into two parts. First, we present the electrical circuit of the power supply. Second, we develop the control system of the voltage source inverter (VSI). The transfer function of the control object is calculated. Various controllers in the control system are analyzed. The developed power supply improves the technical performance of the underwater part, due to elimination of reactive current in the cable and the exclusion of converter unit in the underwater part. The control system uses output voltage and current signals of the onboard part to generate the control signals of the VSI. For carrying out experimental researches of the proposed controllers, we create the simulation model of power supply with HVDC transmission via SPC cable. The results of the simulation show that the tuning on the modal optimum is a more flexible procedure in comparison with the tuning on the technical optimum. Flexible tuning is performed due to the choice of the characteristic polynomial. Although, the structure of the modal controller is quite complex. We improved the PI controller performance, tuned on the technical optimum, by using of anti-saturation structures. That results in a decrease or absence of overshooting and the occurrence of static errors.

Download PDF

Keywords ROV; power supply; HVDC transmission; voltage source inverter; SPC cable; modal controller; PI controller; simulation.
References 1. Voytov D.V. Teleupravlyaemye podvodnye apparaty [Remote-controlled underwater vehicles]. Moscow: Morkniga, 2012, 504 p.
2. Yastrebov V.S., Sobolev G.P., Smirnov A.V., Onishchenko E.L.,. Sychev V.A, Tumanov I.V. Sistema i elementy glubokovodnoy tekhniki i podvodnykh issledovaniy [System and elements of deep-sea technology and underwater research]. Leningrad: Sudostroenie, 1981, 304 p.
3. Ignatov A.M. Podvodnye apparaty dlya geologicheskikh issledovaniy [Underwater vehicles for geological research]. Gelendzhik: PO «Yuzhmorgeologiya», 1990, 92 p.
4. Zaslonov V.V., Kravchenko N.A. Razvitie glubokovodnoy robotizirovannoy tekhniki. Istoriya voprosa [Development of deep-sea robotic technology. History], Molodoy uchenyy [Young scientist], 2016, No. 7, pp. 85-88.
5. Bocharov L. Neobitaemye podvodnye apparaty: sostoyanie i obshchie tendentsii razvitiya [Unmanned underwater vehicles: current status and General trends of development], Elektronika: nauka, tekhnologiya, biznes [Electronics: science, technology, business], 2009, pp. 88-93.
6. Zanin V.Yu. Ispol'zovanie teleupravlyaemykh podvodnykh apparatov so spetsializirovannykh i nespetsializirovannykh plavsredstv [The use of remote-controlled underwater vehicles with specialized and non-specialized watercrafts], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 3 (104), pp. 179-186.
7. Geytenko E.N. Istochniki vtorichnogo elektropitaniya. Skhemotekhnika i raschet: ucheb. posobie [The secondary power sources. Circuit design and calculation: a training manual]. Moscow: SOLON-PRESS, 2008, 448 p.
8. Brilliantov A.N. Razrabotka i issledovanie osnov postroeniya energeticheskikh sistem podvodnykh apparatov: Avtoreferat [Development and research of principles of energy systems, underwater vehicles: the author's abstract]. Moscow, 2005, 48 p.
9. Rulevskiy V.M., Dement'ev Yu.N., Bubnov O.V. Sistemy elektropitaniya tele-upravlyaemykh podvodnykh apparatov [Power supply systems for remote-controlled underwater vehicles], Izvestiya TPU [Bulletin of the Tomsk Polytechnic University], 2004, Vol. 307,
No. 5, pp. 120-123.
10. Mishin V.N., Rulevskiy V.M., Yudintsev A.G. Sistemy elektropitaniya teleupravlyae-mykh podvodnykh apparatov peremennogo toka moshchnost'yu svyshe 10 kVt [The power supply system remotely operated underwater vehicles AC capacity of over 10 kW] Izvestiya TPU [Bulletin of the Tomsk Polytechnic University], 2013, Vol. 322, No. 4: Energetika [Energy], pp. 107-110.
11. Mishin V.N., Rulevskiy V.M., Yudintsev A.G., Burtsev V.E. Ustroystvo peredachi moshchnosti postoyannogo toka k teleupravlyaemomu neobitaemomu podvodnomu apparatu [DC power transmission device to remote-controlled unmanned underwater vehicle] Patent RF No. 2015151299/07. Publ.: 10.08.2016. Bull. No. 22.
12. Lai R. Deep Water Electrical Power Distribution System and Power Components, MSDC Electrical System for Deepwater Subsea Process, NY, 2013,353 p.
13. Song-Mangue J., Harfman Todorovic M., Gupta R., Zhang D., Chi S., Garcés L., Lai R.
A modular stacked DC transmission and distribution system for long distance subsea applications, Houston: Offshore Technology Conference, 2013, pp. 22.
14. Chekh V.A., Lyapunov D.Yu. Sistema elektropitaniya teleupravlyaemykh neobitaemykh podvodnykh apparatov postoyannogo toka [Power supply system of remote-controlled unmanned underwater DC vehicles], Tomsk: Nauchnaya sessiya TUSUR [Tomsk: Scientific session of TUSUR], 2017, pp. 240-244.
15. Besekerskiy V.A. Teoriya sistem avtomaticheskogo upravleniya [The theory of automatic control systems]. Saint Petersburg: Professiya, 2007, 752 p.
16. Kim D.P. Teoriya avtomaticheskogo upravleniya. T. 1. Lineynye sistemy [Automatic control theory. Vol. 1. Linear system]. Moscow: Fizmatlit, 2003, 288 p.
17. Panos J.A., Anthony N.M. Linear Systems. New-York, Mcgraw-Hill College, 1997, 670 p.
18. Trentelman H.L. Stoorvogel A.A. Hautus M. Control Theory for Linear Systems. New York: Springer-Verlag, 2001, 403 p.
19. Yang Q., Le Blond S., Aggarwal R., Wang Y., Li J. New ANN method for multi-terminal HVDC protection relaying, Electric Power Systems Research, 2017, No. 148, pp. 192-201.
20. Mehrasa M., Pouresmaeil E., Zabihi S., Vechiu I., Catalão J.P.S. A multi-loop control technique for the stable operation of modular multilevel converters in HVDC transmission systems, International Journal of Electrical Power and Energy Systems, 2018, No. 96, pp. 194-207.
21. Rulevskiy V.M., Bukreev V.G., Kuleshova E.O., Shandarova E.B., Shandarov S.M., Vasilyeva Yu.Z. The power supply system model of the process submersible device with AC power transmission over the cable-rope, IOP Conference Series: Materials Science and Engineering, 2017, No. 177 (1). Article No. 012098.
22. Rulevskiy V.M., Bukreev, V.G., Shandarova, E.B., Kuleshova, E.O., Shandarov, S.M., Vasilyeva, Yu.Z. Mathematical model for the power supply system of an autonomous object with an AC power transmission over a cable rope, IOP Conference Series: Materials Science and Engineering 2017, No. 177 (1). Article No. 012073.

Comments are closed.