Article

Article title DEVELOPMENT OF INTEGRATED POWER ENERGY INSTALLATION FOR UNDERWATER ROBOTIC TECHNOLOGY PLATFORMS
Authors M.Yu. Medvedev, V.A. Kostyukov, A.M. Maevsky, D.D. Pavlenko
Section SECTION III. SYSTEMS OF ENERGETICS, HOMING AND SENSOR EQUIPMENT
Month, Year 01, 2018 @en
Index UDC 620.424.1
DOI
Abstract In this article the prospects of using power plants based on renewable energy sources for additional and emergency power supply of surface robotic complexes are considered. Such a complex power plant (CPP) can be built on the basis of converters of wind and solar energy and produce at least 10–15 % of the total electrical energy required for the vessel. One of the main problems of constructing this type of CPP is the creation of a promising wind power plant (WPP) that meets a number of necessary criteria relating to reliability, power, noise level, constructive limitations of the surface platform itself. The design of such WPP is substantiated, which in the future is optimized according to the criteria of aerodynamic power on its mobile part taking into account these limitations. The conducted aerodynamic comparison shows the superiority of the considered design of the windmill with respect to analogues for all the most important quality criteria. The peculiarities of the mathematical model of such a wind turbine are considered. We consider the design, electrical circuit design and control features of the output characteristics of CPP based on the proposed WPP which also includes solar panels. For the robotized ship with a given power of the propulsion system, the CPP is designed, which allows it to generate at least 10 % of this power.

Download PDF

Keywords Complex power plant; robotic surface platform; perspective wind power plant; limitations and criteria for aerodynamic optimization.
References 1. Materialy ofitsial'nogo sayta kompanii Eco Marine Power Co. Ltd. (EMP) [Materials of the official website of Eco Marine Power Co. Ltd. (EMP)]. Available at: http://www.ecomarinepower.com/en/about-us.
2. Materialy ofitsial'nogo sayta firmy Ocius Technology Limited [Materials of the official website of Ocius Technology Limited]. Available at: http://ocius.com.au/ wind-assisted-shipping/opening-flat-plate-sails/.
3. Kostjukov V.A., Medvedev M. Y., Maevskiy A.M., Poluyanovich N.K., Dubyago M.N. Adaptive Mechatronic management System of Wind-Driven Power-Plant with Variable Geometry, 18th International Conference on micro/nanotechnologies and Electron Devices.
4. Kostjukov V.A., Medvedev M. Y., Maevskiy A.M., Poluyanovich N.K., Dubyago M.N. Control Law Synthesis of the Wind-Driven Power-Plant with Variable Geometry – ICEMIT-RAIEIC'2016.
5. Kostjukov V.A., Medvedev M. Y., Maevskiy A.M., Poluyanovich N.K. Research prospective wind power plant with a layout type "Rotor fairing" – XIII International Conference SAUM 2016.
6. Kostjukov V.A., Medvedev M. Y., Maevskiy A.M., Poluyanovich N.K. Optimization of constructive forms and mathematical model of wind-driven power-plant in tasks of increasing aerodynamic power – ICMEA 2016 international conference on material engineering and application.
7. Kostyukov V.A., Medvedev M.Yu., Maevskiy A.M., Poluyanovich N.K., Savchenko V.V. Issledovanie perspektivnoy vetroenergeticheskoy ustanovki s tipom komponovki «rotor v rastrube» [Investigation of a perspective wind power plant with the type of arrangement "rotor in the socket"], Vestnik DGTU [Bulletin of the DSTU], 2017, No. 1 (88), pp. 85-91.
8. Kostyukov V.A., Medvedev M.Yu., Maevskiy A. M., Poluyanovich N.K., Savchenko V.V. Optimizatsiya form geometrii rastruba vetroenergeticheskoy ustanovki tipa «rotor v ras-trube» [Optimization of geometry shapes of the socket of the wind power plant of the "rotor in the socket" type], Vestnik DGTU [Bulletin of the DSTU], 2017, No. 4 (91), pp. 61-68.
9. Kostyukov V.A., Maevskiy A.M., Poluyanovich N.K. Metod regulirovaniya chastoty vrashcheniya rotora vetroenergeticheskoy ustanovki za schet upravleniya izmenyaemymi elementami geometrii [The method for regulating the rotor speed of a wind power plant by controlling variable geometry elements], Sb. trudov 46 Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Fedorovskie chteniya [Proceedings of the 46th International Scientific and Practical Conference "Fedorov Readings - 2016"], 2016.
10. Ying P., Chen Y.K., Xu Y.G., Tian Y. Computational and experimental investigations of an omni-flow wind turbine, Applied Energy, 15 May 2015, Vol. 146, pp. 74-83.
11. Rafał Wróżyński, Mariusz Sojka, Krzysztof Pyszny, Krzysztof Pyszny. The application of GIS and 3D graphic software to visual impact assessment of wind turbines, Renewable Energy, October 2016, Vol. 96, Part A, pp. 625-635.
12. Qing'an Li, Junsuke Murata, Masayuki Endo, Takao Maeda, Yasunari Kamada. Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics), Energy, October 2016, Vol. 113, 15, ppP. 1304-1315.
13. Young Gun Heoa, b, Nak Joon Choic, Kyoung Ho Choib, Ho Seong Jia, Kyung Chun Kima. CFD study on aerodynamic power output of a 110 kW building augmented wind turbine, Energy and Buildings, October 2016, Vol. 129, 1, pp. 162-173.
14. Lin Wanga, Xiongwei Liub, Athanasios Koliosa. Renewable and Sustainable Energy Reviews. October 2016, Vol. 64, pp. 195-210.
15. Mikhnenkov L.V. Vetroenergeticheskaya ustanovka planetarnogo tipa [Wind power plant of planetary type], Nauchnyy Vestnik MGTU GA. Ser. «Ekspluatatsiya vozdushnogo transporta i remont aviatsionnoy tekhniki. Bezopasnost' poletov» [Scientific Bulletin of the Moscow State Technical University, series Air transport operation and aviation equipment repair. Safety of flights], 2002, No. 49, pp. 110-113.
16. Mikhnenkov L.V. Vetroenergeticheskaya ustanovka planetarnogo tipa [Wind power plant of planetary type], Nauchnyy vestnik MGTU [Scientific Herald of the MSTU], 2008,
No. 125.
17. Wenyi Liu. Design and kinetic analysis of wind turbine blade-hub-tower coupled system, Renewable Energy, August 2016, Vol. 94, pp. 547-557.
18. Gorelov D.N. Energeticheskie kharakteristiki rotora Dar'e (obzor) [Energy characteristics of the Darier rotor (review)], Teplofizika i aeromekhanika [Thermophysics and Aeromechanics], 2010, Vol. 17, No. 3, pp. 325-333.
19. Kostyukov V.A., Medvedev M.Yu., Maevskiy A.M., Poluyanovich N.K., Savchenko V.V. Pat. na poleznuyu model' «Ustroystvo preobrazovaniya kineticheskoy energii vetra v mekhanicheskuyu energiyu s ispol'zovaniem nizhney napravlyayushchey struktury» [Patent for the utility model "Device for converting the kinetic energy of wind into mechanical energy using the lower guiding structure"] dated 11.08.2016, No. 175397.
20. Khaskin L.Ya. Aerodinamika vetrokolesa s obtekatelem i vykhodnym ustroystvom [Aerodynamics of a wind wheel with a fairing and an output device], Uchenye zapiski TsAGI [Scientific notes TsAGI], 1993, Vol. 24, No. 4.
21. Oborskiy G.A., Morgun B.A., Bundyuk A.N. Metodika rascheta vetrokolesa s samonastraivaemoy lopast'yu [The method of calculating a wind wheel with a self-tuning blade], Pratsі Odes'kogo polіtekhnіchnogo unіversitetu [Pratsi Odeskogo politehnicheskogo university], 2014, issue 2 (44).
22. Savchenko V.V., Stepanov V.S. Ustroystvo dlya preobrazovaniya kineticheskoy energii vetra v mekhanicheskuyu energiyu [Device for converting the kinetic energy of wind into mechanical energy]. Patent RF № 2552635. (May 08, 2015). Posted on 06/10/2005 BI № 16.
23. Pshikhopov V.Kh. Matematicheskie modeli manipulyatsionnykh robotov: uchebnik [Mathematical models of manipulative robots: Textbook]. Taganrog: Izd-vo TTI YuFU, 2008, 117 p.

Comments are closed.