Article

Article title DETERMINATION OF STRUCTURAL PARAMETERS OF THE TRANSFORMER IN THE NON-CONTACT POWER TRANSMISSION SYSTEM
Authors V.A. Gerasimov, A.V. Komlev, M.V. Kraskovskiy, F.Yu. Filozhenko, I.A. Chemezov
Section SECTION III. SYSTEMS OF ENERGETICS, HOMING AND SENSOR EQUIPMENT
Month, Year 01, 2018 @en
Index UDC 621.3(001.3+14.232)
DOI
Abstract The issues of non-contact power transmission system construction on underwater vehicle for charge batteries are considered. The research object is a special high-frequency power transformer with multiple primary and secondary parts, which is part of the power transmission system and determines its properties to a large extent. The substantiation and development of the method for calculation of the structural parameters of a transformer, which satisfies the specified conditions of operation and provides the required capacity, is assigned as a research task. The research is based on mathematical modeling of electromagnetic processes in a transformer using the software package ANSYS Maxwell in combination with full-scale experiment. The magnetic coupling coefficient and the specific inductance of the winding coil are highlighted for the complete identification of the transformer properties. Proposed is a system of relative units, in which the characterizing parameters have a constant value for any cores of the same type, that makes it easy to scale the results of the received technical solutions in conditions of changing the requirements for the transmitted power. The method approximating polynomials definition connecting arrays of a magnetic coupling ratio and specific inductance values with relative gaps values between contact surfaces of transformer parts and interaxial shifts is offered. The executed researches have allowed proposing and substantiating the basic transformers structural parameters calculation method. The calculation algorithm as a certain sequence of computational blocks and conditional transitions is executed in the form of a flowchart. The flowchart in a visual form represents the interconnection of computational operations and in an informal way shows ways of transformer design optimization. The obtained results refer to the ferrite P cores type, but the approaches taken in the studies give an opportunity to expand the calculation method to other structural forms of transformers that can find application in the system of underwater vehicle batteries non-contact charging.

Download PDF

Keywords Autonomous unmanned underwater vehicle; battery charge; non-contact power transmission; high frequency transformer; methods of calculation.
References 1. Stanimir S. Valtchev, Elena N. Baikova, Luis R. Jorge Electromagnetic Field as the Wireless Transporter of Energy, Facta Universitatis, Ser: Elec. Energ., December 2012, Vol. 25, No. 3, pp. 171-181.
2. Wang X., Shang J., Luo Z., Tang L., Zhang X., Li J. Reviews of power systems and environ-mental energy conversion for unmanned underwater vehicles, Renewable and Sustainable Energy Reviews, 2012, Vol. 16, Issue 4, pp. 1958-1970. Available at: http://www.sciencedirect.com/ science/article/pii/S1364032111006095 (accessed 12 February 2018).
3. larionov G.Yu., Shcherbatyuk A.F., Kushnerik A.A., Kvashnin A.G. Donnye prichal'nye ustroystva dlya avtonomnykh neobitaemykh podvodnykh apparatov [Bottom berthing devices for Autonomous unmanned underwater vehicles], Dvoynye tekhnologii [Dual technologies], 2011, No. 1.
4. Illarionov G.Yu., Sidenko K.S., Bocharov L.Yu. Ugroza iz glubiny: XXI vek [Threat from the depths: the XXI century]. Khabarovsk: KGUP «Khabarovskaya kraevaya tipografiya», 2011, 304 p.
5. Li-yan Q. Research on Design of Plate-type Electromagnetic Coupler in Underwater Inductive Power Transmission, MATEC Web of Conferences, 2015, Vol. 31, 5 p. DOI: https://doi.org/10.1051/matecconf/20153108004.
6. Saishenagha D., Devika M. Wireless charging system using high power, high frequency magnetic interface for underwater electric vehicles, ARPN Journal of Engineering and Applied Sciences, 2016, Vol. 11, pp. 6977-6981.
7. Wang S., Song B., Duan G., Du X. Automatic wireless power supply system to autonomous underwater vehicles by means of electromagnetic coupler, J. Shanghai Jiaotong Univ. (Sci.), 2014, Vol. 19 (1), pp. 110-114.
8. Shi J., Li D., Yang C. Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications, J Zhejiang University-Science C (Computers & Electronics), 2014, Vol. 15 (1), pp. 51-62.
9. Hobson B., McEwen R., Erickson J., Hoover T., McBride L., Shane F., Bellingham J. The development and ocean testing of an AUV docking station for a 21” AUV. IEEE Xplore, 7 p. DOI: 10.1109/OCEANS.2007.4449318.
10. Gerasimov V.A., Kuvshinov G.E., Popov O.S., Filozhenko A.Yu., Chepurin P I. Ustroystvo dlya beskon-taktnoy peredachi elektroenergii na podvodnyy ob"ekt [Device for contactless power transmission for underwater object]. Patent 2564199 Rossiyskaya federatsiya, MPK H02J 7/00 (2006/01). applicant and patentee IPMT DVO RAN. No. 2014123766/02; declared10.06.2014; published 27.09.2015, Bull. No. 27, 13 p.
11. Kraskovskiy M.V., Gerasimov V.A., Kuvshinov G.E., Filozhenko A.Y. The use of resonance for current downloading of the transistor keys of the inverter, International Journal of Control Theory and Applications, 2016, Vol. 9. Issue 30, pp. 305-311.
12. McGinnis T., Henze C.P., Conroy K. Inductive power system for autonomous underwater vehicles, OCEANS, 2007, 6 p. Available at: http://ieeexplore.ieee.org/document/4449219/ (accessed 22 February 2018).
13. Kuvshinov G.E., Naumov L.A., Filozhenko A.Yu., Chupina K.V. Beskontaktnaya peredacha elektroenergii na morskoy podvizhnyy ob"ekt [Contactless transmission of electric power to the marine mobile object], Nauchno-tekhnicheskaya konferentsiya: Mater. konf. “Tekhnicheskie problemy osvoeniya mirovogo okeana” [Scientific and technical conference: Proceedings of the conference "Technical problems of the world ocean development"]. Vladivostok: Dal'-nauka, 2007, pp. 141-146.
14. Gerasimov V.A. Filozhenko A.Yu. Chepurin P.I. Struktura sistemy elektrosnabzheniya avtonomnogo neobitaemogo podvodnogo apparata [The structure of the power supply system of the Autonomous uninhabited underwater vehicle], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 3 (140), pp. 47-55.
15. Gerasimov V.A., Kraskovskiy M.V., Filozhenko A.Yu. Povyshenie effektivnosti sistemy beskontaktnogo zaryada akkumulyatornykh batarey avtonomnogo neobitaemogo podvodnogo apparata [Improving the efficiency of the contactless battery charging system of the Autonomous unmanned underwater vehicle], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2017, No. 1-2 (186-187), pp. 108-118.
16. Gerasimov V.A., Kraskovskiy M.V., Kuvshinov G.E., Filozhenko A.Yu. Povyshenie effektivnosti beskontaktnoy peredachi elektroenergii na avtonomnyy podvodnyy apparat [Improving the efficiency of contactless power transmission to an Autonomous underwater vehicle], Podvodnye issledovaniya i robototekhnika [Underwater research and robotics], 2016,
No. 1, pp. 24-30.
17. ANSYS Maxwell – Low Frequency Electromagnetic Field Simulation, ANSYS. Available at: http://www.ansys.com/Products/Electronics/ANSYS-Maxwell (accessed 12 February 2018).
18. Gerasimov V.A., Kraskovskiy M.V., Filozhenko A.Yu., Chepurin P.I. Obespechenie pere-dachi zadannoy moshchnosti v sisteme beskontaktnogo zaryada akkumulyatornykh batarey podvodnogo apparata [Ensuring the transfer of the specified power in the system of contactless battery charge of the underwater vehicle], Vestnik YuUrGU. Seriya «Energetika» [Bulletin of South Ural State University. Series “Power Engineering”], 2017, Vol. 17, No. 4, pp. 48-58.
19. Gerasimov V.A., Kopylov V.V., Kuvshinov G.E, Naumov L.A., Sebto Yu.G., Filozhenko A.Yu., Chepurin P.I. Matematicheskaya model' ustroystva dlya beskontaktnoy peredachi elektroenergii na podvodnyy ob"ekt [Mathematical modeling for contactless electric power transfer to underwater vehicle], Podvodnye issledovaniya i robototekhnika [Underwater Investigation and Robotics], 2012, No. 2/14, pp. 28-34.
20. Gerasimov V.A., Filozhenko A.Yu., Chepurin P.I. Upravlenie klyuchami avtonomnogo invertora i zashchita ot perenapryazheniy [Key management bridge inverter and surge protection], Materialy devyatoy vserossiyskoy nauchno-prakticheskoy konferentsii «Perspektivnye sistemy i zadachi upravleniya» [Materials of the Ninth All-Russian Scientific and Practical Conference "Perspective Systems and Control Problems"]. Taganrog: Izd-vo YuFU, 2014, pp. 300-314.

Comments are closed.