Article

Article title DYNAMIC CALIBRATION OF ASSEMBLED STRAPDOWN INERTIAL NAVIGATION SYSTEMS ON A RATE TABLE
Authors A. V. Kozlov, N. A. Parusnikov, N. B. Vavilova, I. E. Tarygin, A. A. Golovan
Section SECTION IV. COMMUNICATIONS, NAVIGATION AND HOMING
Month, Year 01, 2018 @en
Index UDC 629.05:531.3/.77/.768
DOI
Abstract The paper aims to present a review of inertial navigation system (INS) calibration technique developed for INS of different types and accuracy grades. The technique was developed at Moscow State University, in the laboratory of navigation and control. Several Russian INS manufacturers have been implemented this technique in their production process. The conventional parameters of inertial sensor’s output measurement model are estimated in a simple calibration experiment consisting of consequent rotations of the system for up to half an hour around horizontal axis. INS instrumental axes are consecutively aligned with the rotation axis. All conventional systematic INS error components produce specific attitude and acceleration errors when the latters are computed using inertial sensor’s measurements. As a result, these components can be separated from each other and estimated quantitatively. The principal advantages of the proposed approach are as follows: calibration can be conducted on a single-axis low-grade turntable (neither providing high accuracy of angular motion nor having angular or rate sensors); no predefined plan of operations in the calibration experiment is required, as well as no its specific properties are to be sustained; a unified estimation algorithm for the entire calibration dataset with no specific computations for any specific stage of the experiment; wide range of opportunities to modify models used, e.g. including additional parameters inherent to some types of INS and turntables. In our study, we formulate the estimation problem for INS calibration, and classify possible modifications of sensor’s error models and error equations that we have tested so far in real INS calibrations. Error models are represented as a linear dynamical system with measurements. Its state vector contains: attitude errors, a set of conventional INS error parameters and some additional instrumental errors. After that, the system state vector is estimated using an optimal algorithm (conventional Kalman filter). The observability of the problem considered depends on the rotation pattern of the inertial unit, and the experiment described above ensures that the system becomes observable.

Download PDF

Keywords Inertial navigation systems; inertial sensors; calibration; gyroscopes; accelerometers; optimal estimation; linear dynamical systems with measurements.
References 1. Vaulin Yu.V., Laptev K.Z. Otsenka tochnosti plavaniya avtonomnogo neobitaemogo pod-vodnogo apparata v zadannom rayone [Estimate of the AUV navigation accuracy in the specified area], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2017, No. 1 (186), pp. 74-86. DOI 10.18522/2311-3103-2017-1-7486.
2. Vavilova N.B., Parusnikov N.A., Subkhankulova G.A. Navigatsiya avtonomnogo podvodnogo apparata pri pomoshchi korrektiruemoy beskardannoy inertsial'noy navigatsionnoy sistemy [The Navigation Algorithm of the Underwater Vehicle with Strapdown Inertial Navigation System], Trudy MAI [Proceedings of the Moscow aviation Institute], 2016, No. 89.
3. Berman Z.M., Kanushin V.M., Mironov Yu.V., Mokhov V.P., Sharygin B.L. Sistema inertsial'noy navigatsii i stabilizatsii "Ladoga-M": rezul'taty razrabotki i ispytaniy [Inertial navigation and stabilization system Ladoga-M: the development and test results], Giroskopiya i navigatsiya [Gyroscopy and Navigation], 2002, No. 4 (39), pp. 29-38.
4. Kuznetsov A.G., Portnov B.I., Izmaylov E.A. Razrabotka i ispytaniya dvukh klassov aviatsionnykh besplatformennykh inertsial'nykh navigatsionnykh sistem na lazernykh giroskopakh [Development and tests of two classes of aircraft strapdown inertial navigation systems on laser gyros] Giroskopiya i navigatsiya [Gyroscopy and Navigation], 2014, No. 2 (85), pp. 3-12.
5. Soloviev A., Rutkowski A.J. Fusion of inertial, optical flow, and airspeed measurements for UAV navigation in GPS-denied environments, Proc. SPIE 7332, Unmanned Systems Technology XI, 733202, 2009. DOI: 10.1117/12.820177.
6. Wendel J., Meister O., Schlaile C., Trommer G.F. An integrated GPS/MEMS-IMU navigation system for an autonomous helicopter, Aerospace Science and Technology, 2006, Vol. 10, Issue 6, pp. 527-533.
7. Emel'yantsev G.I., Landau B.E., Levin S.L., Gurevich S.S., Romanenko S.G. Osobennosti postroeniya integrirovannoy sistemy orientatsii i navigatsii dlya orbital'nogo kosmicheskogo apparata [Specifics of an Integrated Attitude Reference and Navigation System for Orbital Spacecraft], Giroskopiya i navigatsiya [Gyroscopy and Navigation], 2011, No. 1 (72), pp. 17-25.
8. Vavilova N.B., Golovan A.A., Kozlov A.V., Nikitin I.V., Panev A.A., Parusnikov N.A., Solovykh I.A., Nikiforov S.V., Lavyrev A.M., Morozov S.V., Afanas'ev A.V., Vesnovskiy I.V., Konon A.V., Laptiev A.A., Turusikov D.V. Rezul'taty razrabotki i testirovaniya navigatsionnykh sistem defektoskopov magistral'nykh nefte- i gazoprovodov [A navigation system of a pipeline inspection system for oil and gas pipelines: the results of the development and testing], Sb. materialov XXII Sankt-Peterburgskoy mezhdunarodnoy konferentsii po integrirovannym navigatsionnym sistemam [Proceedings of the 22nd Saint Petersburg International Conference on Integrated Navigation Systems], Concern CSRI Elektropribor, JSC Saint-Petersburg, 2015, pp. 357-362.
9. Kronenvett N., Ruppel't Ya., Trommer G.F. Pretsizionnoe pozitsionirovanie peshekhoda v pomeshchenii na osnove kontrolya za stadiyami ego pokhodki [Motion Monitoring based on a Finite State Machine for Precise Indoor Localization], Giroskopiya i navigatsiya [Gyroscopy and Navigation], 2017, No. 1 (96), pp. 33-48. DOI: 10.17285/0869-7035.2017.25.1.033-048.
10. Skog I., Händel P. In-car positioning and navigation technologies: a survey, IEEE Transactions on Intelligent Transportation Systems, 2010, Vol. 10, Issue 1, pp. 4-21. DOI: 10.1109/TITS.2008.2011712.
11. Boronakhin A.M., Oleynik L.N., Filipenya N.S. Malogabaritnaya integrirovannaya sistema diagnostiki rel'sovogo puti [The small-size integrated system for railway track diagnostics] Giroskopiya i navigatsiya [Gyroscopy and Navigation], 2009, No. 1 (64), p. 63-74.
12. Smoller Yu.L., Yurist S.Sh., Bogdanov O.N., Bolotin Yu.V., Golovan A.A., Kozlov A.V. Rezul'taty ispytaniy na yakhte beskardannogo gravimetra GT-X [Results of Tests of the Strapdown Gravimeter GT-X on a Yacht], Sb. materialov XIX Sankt-Peterburgskoy mezhdunarodnoy konferentsii po integrirovannym navigatsionnym sistemam [Proceedings of the 19th Saint Petersburg International Conference on Integrated Navigation Systems]. Concern CSRI Elektropribor, JSC Saint-Petersburg, 2012, pp. 172-174.
13. Brock J.C., Wright C.W., Sallenger A.H., Krabill W.B., Swift R.N. Basis and methods of nasa airborne topographic mapper lidar surveys for coastal studies, Journal of Coastal Research, 2002, Vol. 18, No. 1, pp. 1-13.
14. Savage P.G. Strapdown inertial navigation integration algorithm design part 1: attitude algorithms, Journal of Guidance Control and Dynamics, 1998, Vol. 21, No. 1, pp. 19-28. DOI: 10.2514/2.4228.
15. Savage P.G. Strapdown inertial navigation integration algorithm design part 2: velocity and position algorithms, Journal of Guidance Control and Dynamics, 1998, Vol. 21, No. 2,
pp. 208-221. DOI: 10.2514/2.4242.
16. Titterton D.H., Weston J.L. Strapdown inertial navigation technology, 2nd ed. – IET, London, UK, & AIAA, Reston, Virginia, USA. 2004, 550 p. ISBN 978-0-86341-358-2.
17. Kailath T., Sayed A.H., Hassibi B. Linear estimation. Prentice Hall, NJ, USA, 2000, 850 p.
18. Baklanov F., Dambeck J. Unified observability analysis in linear time-varying systems, Journal of Guidance Control and Dynamics, 2017, Vol. 40, No. 11, pp. 3005-3011. DOI: 10.2514/1.G002101.
19. Kozlov A.V., Sazonov I.Yu., Vavilova N.B., Parusnikov N.A. Kalibrovka inertsial'nykh navigatsionnykh sistem na grubykh stendakh s uchetom razneseniya chuvstvitel'nykh mass n'yutonometrov [Calibration of an Inertial Measurement Unit on a Low-grade Turntable with Consideration of Spatial Offsets of Accelerometer Proof Masses], Sb. materialov XX Sankt-Peterburgskoy mezhdunarodnoy konferentsii po integrirovannym navigatsionnym sistemam [Proceedings of the 20th Saint Petersburg International Conference on Integrated Navigation Systems]. Saint Petersburg: GNTs RF OAO "Kontsern "TsNII "Elektropribor", 2013, pp. 104-107.
20. Kozlov A., Sazonov I., Vavilova N. IMU calibration on a low grade turntable: embedded estimation of the instrument displacement from the axis of rotation, Proceeding of the 1st IEEE International Symposium on Inertial Sensors and Systems. IEEE Sensors Council, New York, NY, USA, 2014, pp. 105-108. DOI: 10.1109/ISISS.2014.6782525.
21. Kozlov A.V., Tarygin I.E., Golovan A.A., Shaymardanov I.Kh., Dzuev A.A. Kalibrovka inertsial'nykh izmeritel'nykh blokov s otsenkoy temperaturnykh zavisimostey po eksperimentu s peremennoy temperaturoy: rezul'taty kalibrovki BINS-RT [Calibration of an inertial measurement unit at changing temperature with simultaneous estimation of temperature variation coefficients: a case study on BINS-RT], Sb. materialov XXIV Sankt-Peterburgskoy mezhdunarodnoy konferentsii po integrirovannym navigatsionnym sistemam [Proceedings of the 24th Saint Petersburg International Conference on Integrated Navigation Systems]. Saint Petersburg: GNTs RF OAO "Kontsern "TsNII "Elektropribor", 2017, pp. 225-228. DOI: 10.23919/ICINS.2017.7995635.
22. Diesel J.W. Calibration of a Ring Laser Gyro Inertial Navigation System, Proceedings of the 13-th biennal guidance test symposium, 6–8 October 1987, Holloman AFB, New Mexico. AD-TR-87-08. USA. 6585th Test group, Central inertial guidance test facility, 1987, Vol. I,
pp. S01A 1-37.
23. Kozlov A.V., Tarygin I.E., Golovan A.A. Kalibrovka inertsial'nykh izmeritel'nykh blokov na grubykh stendakh s otsenkoy temperaturnykh zavisimostey po eksperimentu s peremennoy temperaturoy [Calibration of inertial measurement units on a low-grade turntable with simultaneous estimation of temperature coefficients], Sb. materialov XXI Sankt-Peterburgskoy mezhdunarodnoy konferentsii po integrirovannym navigatsionnym sistemam [Proceedings of the 21st Saint Petersburg International Conference on Integrated Navigation Systems]. Saint Petersburg: GNTs RF OAO "Kontsern "TsNII "Elektropribor", 2014, pp. 319-322.

Comments are closed.