Article

Article title INVESTIGATION OF THERMOELASTIC STRESSES IN POLYCRYSTALLINE SILICON FILMS ON SAPPHIRE SUBSTRATE OBTAINED BY PLASMOCHEMICAL DEPOSITION
Authors Yu. V. Klunnikova, E. Yu. Gusev
Section SECTION I. ELECTRONICS AND NANOTECHNOLOGY
Month, Year 02, 2018 @en
Index UDC 539.23
DOI 10.23683/2311-3103-2018-2-16-25
Abstract We present the results of experimental studies of the plasma-chemical deposition method from the gas phase application to produce polycrystalline silicon films on sapphire substrate, which are the basis for the production of radiation-resistant integrated circuits. The obtained samples were examined by stylus profilometry and atomic force microscopy. We have found the set of parameters that influence the phase, crystal size values and root-mean-square roughness of the obtained films. We define the plasma-chemical deposition modes that ensure the homogeneous polycrystalline silicon films production with crystallite sizes up to 250 nm. The average surface roughness is 16.2 ± 2.1 nm. The effect of differences in the coefficients of silicon and sapphire thermal expansion is minimized at deposition temperatures of about 700 °C, and the density of defects in the resulting films is reduced. Plasma-chemical deposition of polycrystalline silicon film on sapphire substrate is accompanied by the emergence of thermoelastic stresses, which can cause destruction of the film coating and the substrate surface layer. The level of thermoelastic stresses in polycrystalline silicon films on sapphire substrate is estimated from the parameters of plasma-chemical deposition, film thickness, film and substrate properties in the ANSYS program using the control element method. We have found out that the value of thermoelastic stresses in the polycrystalline silicon film – sapphire structure is proportional to the deposition temperature. The thermoelastic stresses growth with deposition temperature increment is associated with an increase in the influence of the difference in the temperature coefficients of the film and substrate linear expansion. The results of the research can be used to develop devices for micro- and nanoelectronics, in particular, specialized integrated circuits and solar energy.

Download PDF

Keywords Sapphire substrate; polycrystalline silicon films; plasmochemical deposition; thermoelastic stresses.
References 1. El-Kareh B. Fundamentals of semiconductor processing technology. Boston, Springer, 1995, 599 p.
2. Ageev O.A., Belyaev A.E., Boltovec N.S., Konakova R.V., Milenin V.V., Pilipenko V.A. Fazy vnedreniya v tekhnologii poluprovodnikovyh priborov i SBIS [Implementation phases in semiconductor devices and VLSI technology], Har'kov: NTK “Institut monokristallov”, 2008, 392 p.
3. Ageev O.A., Balakirev S.V., Bykov A.V., Gusev E.Y., Fedotov A.A., Jityaeva J.Y., Il'in O.I., Il'ina M.V., Kolomiytsev A.S., Konoplev B.G., Krasnoborodko S.U., Polyakov V.V., Smirnov V.A., Solodovnik M.S., Zamburg E.G. Development of new metamaterials for advanced element base of micro- and nanoelectronics, and microsystem devices. In: Advanced Materials – Manufacturing, Physics, Mechanics and Applications. Springer International Publishing Switzerland, 2016, pp. 563-580.
4. Ageev O.A., Gusev E.Yu., Jityaeva J.Y., Ilina M.V., Bykov Al.V. Grain size and doping effect on structure and electromechanical properties of polycrystalline silicon for MEMS applications, Journal of Physics: Conference Series, 2016, Vol. 741 (1), pp. 012001.
5. Klunnikova Yu.V. Optimizaciya tekhnologicheskogo processa polucheniya vysokokachestvennyh podlozhek iz sapfira dlya integral'nyh skhem [Optimization of the technological process for obtaining high-quality sapphire substrates for integrated circuits], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, No. 4 (177), pp. 23-31.
6. Malyukov S.P., Klunnikova Yu.V., Parinov I.A. Investigations of Defects Formation During Sapphire Growth. In: Advanced Nano- and Piezoelectric Materials and Their Applications. USA: Nova Science, 2014, pp. 89-108.
7. Malyukov S.P., Klunnikova Yu.V. Physical and Technological Fundamentals of Sapphire Production for Electronics. In: Nano- and Piezoelectric Technologies, Materials and Devices. USA: Nova Science, 2013, pp. 133-150.
8. Malyukov S.P., Klunnikova Yu.V. Complex Investigations of Sapphire Crystals Production. In: Advanced Materials, Springer Proceedings in Physics. Switzerland, 2014, Vol. 152, pp. 55-69.
9. Malyukov S.P., Klunnikova Yu.V., Kovalev A.V., Lashkov A.V. Razrabotka i issledovanie matematicheskikh modeley i algoritmov optimizacii tekhnologii izgotovleniya podlozhek dlya memristorov [Development and research of mathematical models and optimization algorithms for memristors substrates manufacturing technology], Fundamental'nye issledovaniya [Fundamental research], 2012, No. 11, pp. 435-439.
10. Dobrovinskaya E.R., Lytvynov L.A., Pishchik V.V. Sapphire. Material, Manufacturing, Applications. New York: Springer, 2009, 481 p.
11. Malyukov S.P., Cherednichenko D.I., Klunnikova Y.V. Heat-physical processes at the sapphire crystals growth by horizontal directed crystallization, In: Sapphire: structure, technology and applications. USA: Nova Science Publishers, 2013, pp. 101-118.
12. Velichko R.V., Gusev E.Yu., Gamaleev V.A., Mihno A.S., Bychkova A.S. Issledovanie rezhimov plazmohimicheskogo osazhdeniya plenok nano- i polikristallicheskogo kremniya [Investigation of plasmachemical deposition modes of nano- and polycrystalline silicon films], Fundamental'nye issledovaniya [Fundamental research], 2012, No. 11, pp. 1176-1179.
13. Gusev E.Yu., Zhityaeva Yu.Yu., Bykov A.V., Bespoludin V.V. Issledovanie elektrofizicheskikh svoystv plenok polikristallicheskogo kremniya dlya sozdaniya mikroelektromekhanicheskih system [Investigation of the electrophysical properties of polycrystalline silicon films for the microelectromechanical systems development], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 9, pp. 126-134.
14. Alekseev A., Ageev O., Gusev E., Konoplev B., Lysenko I., Petrov S. Tandem ZAO "NTO" i NOC "Nanotekhnologii" YuFU – primer uspeshnogo vzaimodeystviya proizvodstva i nauki [Tandem JSC "NTO" and SEC "Nanotechnology" SFedU – an example of successful interaction of production and science], Ehlektronika: Nauka, tekhnologiya, biznes [Electronics: science, technology, business], 2016, No. 7 (157), pp. 78-83.
15. Gusev E.Yu., Zhityaeva Yu.Yu. Vliyanie parametrov plazmokhimicheskogo osazhdeniya na svoystva oksida kremniya dlya sozdaniya solnechnyh ehlementov [Influence of plasma-chemical deposition parameters on the properties of silicon oxide for the creation of solar cells], FizikA.SPb 2017: tezisy dokl. Mezhdunar. molodezhnoy konf. (Sankt-Peterburg, 24-26 okt. 2017). Available at: http://physica.spb.ru/data/uploads/physica2017thesises.html.
16. Gusev E.Yu., Jityaeva J.Y., Geldash A.A., Ageev O.A. Effects of PECVD temperature and RF power on surface structure and refractive index of amorphous and polycrystalline silicon films, Journal of Physics: Conference Series, 2017, Vol. 917, pp. 032029.
17. Ageev O.A., Kolomiycev A.S., Mihaylichenko A.V., Smirnov V.A., Ptashnik V.V., Solodovnik M.S., Fedotov A.A., Zamburg E.G., Klimin V.S., Il'in O.I., Gromov A.L., Rukomoykin A.V. Poluchenie nanorazmernykh struktur na osnove nanotekhnologicheskogo kompleksa NANOFAB NTK-9 [Obtaining of nanoscale structures based on nanotechnology complex NANOFAB NTK-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 1 (114), pp. 109-116.
18. Konoplev B.G., Ageev O.A. Elionnye i zondovye nanotekhnologii dlya mikro- i nanosistemnoy tekhniki [Elyon and probe nanotechnologies for micro- and nanosystem systems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2008, No. 12 (89),
pp. 165-175.
19. Kaplun A.B., Morozov E.M., Olfer'eva M.A. ANSYS v rukah inzhenera: Prakticheskoe rukovodstvo [ANSYS in the hands of an engineer: practical guide]. Moscow: Editorial UrSs, 2003, 272 p.
20. Buy T.H. Razrabotka i issledovanie chuvstvitel'nykh elementov datchikov davleniya na osnove struktur «kremniy na sapfire» s ispol'zovaniem lazernykh tekhnologiy: dis. kand. tekhn. nauk [Development and investigation of pressure sensing elements on the basis of "silicon on sapphire" structures using laser technologies: cand. of eng. sc. diss.], Taganrog, 2017, 123 p.
21. Haider J. et al. Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis, Journal of Materials Processing Technology, 2005, Vol. 168, № 1, pp. 36-41.
22. Astashenkova O.N., Korlyakov A.V. Mekhanizmy formirovaniya mekhanicheskikh napryazheniy v plenkakh karbida kremniya i nitrida alyuminiya, poluchennykh magnetronnym metodom [Mechanisms for the formation of mechanical stresses in silicon carbide and aluminum nitride films obtained by the magnetron method], Sovremennaya nauka: issledovaniya, idei, rezul'taty, tekhnologii [Modern science: research, ideas, results, technology], 2014, No. 2 (15). pp. 57-61.
23. Astashenkova O.N., Korlyakov A.V. Kontrol' fiziko-mekhanicheskikh parametrov tonkikh plenok [Control of physicomechanical parameters of thin films], Nano- i mikrosistemnaya tekhnika [Nano- and microsystem technology], 2013, № 2, pp. 24–29.
24. Malyukov S.P., Klunnikova Yu.V., Saenko A.V., Buj T.H. Modelirovanie temperaturnykh poley i vnutrennikh napryazheniy v plastine sapfira pri lazernoy obrabotke [Simulation of temperature fields and internal stresses in sapphire substrate during laser treatment], Fizika i khimiya obrabotki materialov [Physics and chemistry of material processing], 2016, No. 5, pp. 11-16.
25. Alekseev A.N., Sokolov I.A., Ageev O.A., Konoplev B.G. Kompleksnyy podkhod k tekhnologicheskomu osnashcheniyu centra prikladnykh razrabotok. Opyt realizacii v NOC «Nanotekhnologii» YuFU [Complex approach to the technological equipment of the center of applied developments. Experience of implementation in REC "Nanotechnology" SFedU], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 207-210.
26. Dostanko A.P., Avakov S.M., Ageev O.A. Tekhnologicheskie kompleksy integrirovannykh processov proizvodstva izdeliy ehlektroniki [Technological complexes of integrated processes for the production of electronics products], Minsk: Belorusskaya nauka, 2016, 251 p.

Comments are closed.