Authors N. N. Prokopenko, A. V. Bugakova, N. V. Butyrlagin
Month, Year 02, 2018 @en
Index UDC 621.375.9
DOI 10.23683/2311-3103-2018-2-113-126
Abstract It is shown that in the analysis of nonlinear effects in the large-signal operation, it is advisable to combine the basic subcircuits of the differential operational amplifiers (Op-Amp) and differential difference (DOA) operational amplifiers, including the input differential (DS) and the intermediate (DP) stages, into the structure of the inertialless capacitance correction driver (DCc), the transfer characteristic of which has the output current limitation. In this case, the difference between the functional diagram of the DOA and the classical Op-Amp circuit is that several additional identical input DSs (DS1, DS2, DS3, etc.) are connected to the DP, the range of active operation of which, characterized by the clamping voltage, is measured in unities of volts. Consequently, the DOA has a higher linearity than the classical operational amplifier in the input circuits. On the basis of the Op-Amp (DOA) non-linear macromodels with a first-order transfer function the interrelation of parameters of the amplitude characteristic restriction in the output cascade and the DSK through passage with the key OA (DOA) dynamic parameters – On the basis of Op-Amp (DOA) nonlinear macromodels with a first-order transfer function the interrelation of the limitation parameters in the constraint parameters of the gain characteristic of the output stage and the transfer characteristic of the DCc with basic dynamic parameters of Op-Amp (DOA) – the maximum slew rate; the maximum frequency of the distortionless output harmonic voltage with a defined amplitude; the capacitance of balancing capacitor; the equivalent impedance, connected in parallel with the balancing capacitor; the loop gain; the Op-Amp gain voltage in the low frequency range; the feedback circuit gain; the transient time; the output voltage amplitude of the Op-Amp; the actual power in the load; the unity gain frequency of the corrected Op-Amp; the upper frequency limit of the open-loop Op-Amp; the cutoff gain frequency of the signals at full power in the load. It is shown that the linear operation area of the Op-Amp (DOA) is a complex polygon that is characterized by the break frequencies of the DCc overload segments and the output stage, and also by some generalized coefficient 0, simultaneously taking into account the nonlinearities of the characteristics of the output stage and the DCc for a defined depth of total negative feedback. The recommendations are given on the design of Op-Amps and DOAs, considering the nonlinear effects in their main subcircuits.

Download PDF

Keywords Maximum slew rate; differential operational amplifier; differential difference operational amplifier; basic dynamic parameters; nonlinearity of the output stage; nonlinearity of the capacitance correction driver.
References 1. Babayan R.R., Morozov V.P. Analogovye integral'nye skhemy – apparatnaya podderzhka obrabotki nepreryvnykh signalov [Analog integrated circuits – hardware support for processing of continuous signals], Datchiki i sistemy [Sensors and systems], 2015, No. 3, pp. 51-62.
2. Babayan R.R., Morozov V.P. Analogovye integral'nye skhemy – apparatnaya podderzhka obrabotki nepreryvnykh signalov [Analog signal processing devices in microcontroller systems], Datchiki i sistemy [Sensors and systems], 2015, No. 3, pp. 51-62.
3. Ivanov V.V., Filanovsky I.M. Operational Amplifier Speed and Accuracy Improvement. 1st edition Kluwer Academic Publishers, Boston, 2004, 194 p. DOI: 10.1007/b105872.
4. Anisimov V.I., Kapitonov M.V., Prokopenko N.N., Sokolov Yu.M. Operatsionnye usiliteli s neposredstvennoy svyaz'yu kaskadov: monografiya [Operational Amplifiers with the direct coupling of stages: monograph]. Leningrad: Energiya, 1979, 148 p.
5. Polonnikov D.E. Operatsionnye usiliteli: printsipy postroeniya, teoriya, skhemotekhnika: monografiya [Operational amplifiers: design principles, theory, circuit design: monograph]. Moscow: Energoatomizdat, 1983, 216 p.
6. Prokopenko N.N. Nelineynaya aktivnaya korrektsiya v pretsizionnykh analogovykh mikroskhemakh: monografiya [Nonlinear Active Correction in Precision Analog Chips: monograph]. Rostov-on-Don: Izd-vo Severo-Kavkazskogo nauchnogo tsentra vysshey shkoly, 2000, 222 p.
7. Prokopenko N.N., Budyakov A.S. Arkhitektura i skhemotekhnika bystrodeystvuyushchikh operatsionnykh usiliteley [Architecture and circuitry of the high speed operational amplifiers]. Shakhty: YuRGUES, 2006, 232 p.
8. Prokopenko N.N., Pakhomov I.V., Bugakova A.V., Butyrlagin N.V. The method of speeding of the operational amplifiers based on the folded cascade, 2016 IEEE EWDTS. Armenia, Yerevan, 2016, pp. 1-4.
9. Patent US № 7342450. Slew rate enhancement circuitry for folded cascode amplifier, Jones Mark A. Appl. 11/401,492; Filed: 11.04.2006; Date of patent: 11.03.2008.
10. Rezaei M., Zhian-Tabasy E., Ashtiani S.J. Slew rate enhancement method for folded-cascode amplifiers, Electronics Letters, 2008, Vol. 44, No. 21, pp. 1226-1228. DOI: 10.1049/el:20082200.
11. Patent US № 8604878. Folded cascode amplifier with an enhanced slew rate, Lin Po-Chuan. Appl. 13/474,082; Filed: 17.05.2012; Date of patent: 10.12.2013.
12. Patent US № 7176760. CMOS class AB folded cascode operational amplifier for high-speed applications,Jones Mark A. Appl. 11/096,321; Filed: 31.03.2005; Date of patent: 13.02.2007
13. Huang B., Chen D.A Simple Slew Rate Enhancement Technique Wiflnmproved Linearity And Preserved Small Signal Performance, 57th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2014, pp. 270-273.
14. Nizza N., et al. A current feedback adaptive biasing method for class-AB OTA cells, Research in Microelectronics and Electronics, 2005, Vol. 2, pp. 186-189. DOI: 10.1109/RME.2005.1542968.
15. Thanachayanont A., Chaloenlarp W. Low-voltage, rail-to-rail, Gm-enhanced pseudo-differential class-AB OTA, 47th IEEE Midwest Symposium on Circuits and Systems (MWSCAS), 2004, Vol. l, pp. 53-56. DOI: 10.1109/MWSCAS.2004.1353895.
16. Carvajal R.G., et al. Low-power low-voltage differential class-AB OTAs for SC circuits, Electronics Letters, 2002, Vol. 38, No. 22, pp. 1304-1305. DOI: 10.1049/el:20020958.
17. Carvajal R.G., et al. New low-power low-voltage differential class-AB OTA for SC circuits, International Symposium on Circuits and Systems (ISCAS), 2003, Vol. 1, pp. 589-592. DOI: 10.1109/ISCAS.2003.1205632.
18. Giustolisi G., Palumbo G. A novel 1-V class-AB transconductor for improving speed performance in SC applications, 2003 International Symposium on Circuits and Systems (ISCAS '03), 2003, Vol. l, pp. 153-156.
19. Ramirez-Angulo J., et al. A new class AB differential input stage for implementation of low- voltage high slew rate op amps and linear transconductors, IEEE International Symposium on Circuits and Systems (ISCAS), 2001, Vol. 1, pp. 671-674. DOI: 10.1109/ISCAS.2001.921945.
20. Sen S., Bosco L. A class-AB high-speed low-power operational amplifier in BiMOS technology, IEEE Journal of Solid-State Circuits, 1996, Vol. 31, Issue 9, pp. 1325-1330. DOI: 10.1109/4.535418.
21. Pakhomov I.V., Butyrlagin N.V. Micropower high-speed CMOS operational amplifier with the circuit of nonlinear correction of the input stage, International Siberian Conference on Control and Communications (SIBCON), Omsk, Russia, 2015, pp. 1-6.
22. Patent US № 6710654. Bipolar class AB folded cascode operational amplifier for high-speed applications, Parkhurst Ch., Acosta J. Appl. 09/999,475; Filed: 15.11.2001; Date of patent: 23.03.2004.
23. Patent US № 6262633. High output current operational amplifier output stage, Close J.P. Appl. 09/560,305; Filed: 27.04.2000; Date of patent: 17.07.2001.
24. Patent US № 5374897. Balanced, high-speed differential input stage for Op-amps, Moraveji F. Appl. 141,794; Filed: 21.10.1993; Date of patent: 20.12.1994.
25. Harvey B. Selecting video op amps, EDN MOMENT. June 26, 2008. Available at: (access is free)
26. Huang B., Chen D. A simple slew rate enhancement technique with improved linearity and preserved small signal performance, IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), College Station, TX, 2014, pp. 270-273. DOI: 10.1109/MWSCAS.2014.6908404.
27. Filho S.N., et al. New CMOS OTA for fully integrated continuous-time circuit applications, Electronics Letters, 1989, Vol. 25, No. 24, pp. 1674-1675. DOI: 10.1049/el:19891122.
28. Patent US № 6822505. Mobility compensation in MOS integrated circuits, Palaskas G., Pavan Sh.Y. Appl. 09/472,702; Filed: 27.12.1999; Date of patent: 23.11.2004.
29. Patent US № 6882185. Exponential current generator and method, Walker B.C., Gazzerro P.C. Appl. 09/109,504; Filed: 2.07.1998; Date of patent: 19.04.2005.
30. Patent US № 4335358. Class "B" type amplifier, Hoeft W.H. Appl. 06/113928; Filed: 06.15.1982; Date of patent: 01.21.1980.
31. Prokopenko N.N., Gayduk A.R., Bugakova A.V. Perekhodnye protsessy v operatsionnom usilitele s eksponentsial'noy prokhodnoy kharakteristikoy drayvera korrektiruyushchego kondensatora [Transients in operational amplifier, with exponential transfer characteristic of correction capacitor driver], Radiotekhnika [Radiotechnics], 2017, No. 10, pp. 149-154.
32. Prokopenko N.N., Bugakova A.V., Gaiduk A.R. Research of Operational Amplifiers with Nonlinear Drivers of Correction Capacity, 2017 IEEE EWDTS, Novi Sad, Serbia, 2017, pp. 637-640.
33. Krithivasan R., et al. A High-Slew Rate SiGe BiCMOS Operational Amplifier for Operation Down to Deep Cryogenic Temperatmes, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2006, pp. 1-4. DOI: 10.1109/BIPOL.2006.311170.
34. Gorlov M., Emel'yanov A., Plebanovich V., Moskalev V. Konstruktivno-tekhnologicheskie osobennosti proektirovaniya radiatsionno-stoykikh integral'nykh skhem operatsionnykh usiliteley [Structural and technological features of designing radiation-resistant integrated circuits of operational amplifiers], Komponenty i tekhnologii [Components and Technologies], 2007, No. 67, pp. 158-159.
35. Prokopenko N.N., Butyrlagin N.V., Bugakova A.V., Ignashin A.А. Method for Speeding the Micropower CMOS Operational Amplifiers with Dual-Input-Stages, 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi, Georgia, 2017.
36. Dvornikov O.V., Dziatlau V.L., Prokopenko N.N., Petrosiants K.O., Kozhukhov N.V., Tchekhovski V.A. The Accounting of the Simultaneous Exposure of the Low Temperatures and the Penetrating Radiation at the Circuit Simulation of the BiJFET Analog Interfaces of the Sensors, International Siberian Conference on Control and Communications (SIBCON), Astana, 29-30.06.17. DOI: 10.1109/SIBCON.2017.7998507.

Comments are closed.