Authors I. Ya. Lvovich, A. P. Preobrazhenskiy, O. N. Choporov
Month, Year 03, 2018 @en
Index UDC 621.396
Abstract In this paper we consider the problem associated with the simulation of electromagnetic wave scattering on a metal object that has a complex shape. The method of integral equations is used to calculate the scattering characteristics. Fredholm equation of the second kind was chosen, based on the density of an unknown electric current. When the integral equation was solved using the method of moments, the correct description of the kernel singularity was given. Piecewise constant functions were considered as basis functions. Dirac functions were taken as trial functions. The solution of the chosen integral equation was carried out using the method of moments. Based on the Kirchhoff integral, the determination of the scattered electromagnetic field is carried out, it has a connection with the found electric currents. The regularities of electromagnetic wave scattering were studied for the region of the anterior hemisphere of the aperture of the hollow structure that is part of the object. In order to optimize the characteristics of the considered diffraction structures, a genetic algorithm was used. The demonstration of solutions of such algorithm is given. The table of probability of chromosome selection is given. We applied the population, which consisted of four chromosomes. The process of selecting chromosomes was carried out on the basis of the roulette wheel method. The results of optimization of the size of the analyzed diffraction structure are given. The main stages of the method for calculation of diffraction structures, which is associated with a combination of the method of integral equations and genetic algorithm.

Download PDF

Keywords Diffraction; radio wave scattering; optimization; integral equation; genetic algorithm.
References 1. Kul'neva E.Yu., Gashchenko I.A. O kharakteristikakh, vliyayushchikh na modelirovanie radiotekhnicheskikh ustroystv [On the characteristics influencing the modeling of radio engineering devices], Sovremennye naukoemkie tekhnologii [Modern science-intensive technologies], 2014, No. 5-2, pp. 50.
2. Kostyuchenko V.V., Ankina N.A. Modelirovanie rasseyaniya impul'sov radiovoln na poloy strukture [Modeling of the scattering of pulses of radio waves to the hollow structure of the], Modelirovanie, optimizatsiya i informatsionnye tekhnologii [Simulation, optimization and information technology], 2017, No. 2 (17).
3. Boluchevskaya O.A., Gorbenko O.N. Svoystva metodov otsenki kharakteristik rasseyaniya elektromagnitnykh voln [Properties of methods of estimation of characteristics of electromagnetic waves scattering], Modelirovanie, optimizatsiya i informatsionnye tekhnologii [Modeling, optimization and information technologies], 2013, No. 3, pp. 4.
4. Radiolokatsionnye kharakteristiki letatel'nykh apparatov [Radar characteristics of aircraft], ed. by L.T. Tuchkova. Moscow: Radio i svyaz', 1985, 235 p.
5. Steynberg B.D., Carlson D.L., Wu Stan Lee. Experimental determination of EPO individual reflective parts of the aircraft, Proc., 1989, No. 5, pp. 35-42.
6. Mitra R., Tatsuo Itoh, Ti-Shu Li. Analytical and numerical studies of the relative convergence phenomenon arising in the solution of an integral equation by the moment method, IEEE Trans. Microwave Theory Tech., 1972, Vol. MTT-20, No. 2, pp. 96-104.
7. Sekine T., Kobayashi K., and Yokokawa S. Transient Analysis of Lossy Nonuniform Transmission Line Using the Finite Difference Time Domain Method, Electronics and Communications in Japan, Aug. 2002, Part 3, Vol. 85, No. 8, pp. 1018-1026.
8. Lu T.L., Guo L., Cui X., and Hagness X. Gu. Research of Experiments and the FDTD Method of Multi-condcutor Transmission Lines for Transient Analsysis, IEEE EMC Symp., 2004,
No. 138, pp. 708-712.
9. Johansson F.S. A new planar grating-reflector antenna, IEEE Trans. Antennas and Propag., 1990, Vol. 38, No. 9, pp. 1491-1495.
10. .Hirono T., Lui W., Seki S., and Yoshikuni Y. A Three-Dimensional FourthOrder Finite-Difference Time-Domain Scheme Using a Symplectic Integrator Propagator, IEEE Trans. Microwave Theory Tech., Sep. 2001,Vol. 49, No. 4, pp. 1640-1648.
11. Michalski K.A. and Zheng D. Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part II: Implementation and results for contiguous half-spaces, IEEE Trans. Antennas Propag., Mar. 1990, Vol. 38, No. 3, pp. 345-352.
12. Vychislitel'nye metody v elektrodinamike [Computational methods in electrodynamics], ed. by R. Mitry. Moscow: Mir, 1977, 485 p.
13. Panarin D.G. Modelirovanie rasseyaniya elektromagnitnykh voln na elektrodinamicheskikh ob"ektakh s ispol'zovaniem modifitsirovannogo metoda momentov [Simulation of electromagnetic wave scattering on electrodynamic objects using the modified method of moments], Modelirovanie, optimizatsiya i informatsionnye tekhnologii [Modeling, optimization and information technologies], 2016, No. 3 (14), pp. 8.
14. Glotova T.V., Mel'nikova T.V. Modifikatsiya metoda momentov v zadachakh rasseyaniya elektromagnitnykh voln [Modification of the method of moments in problems of electromagnetic wave scattering], Modelirovanie, optimizatsiya i informatsionnye tekhnologii [Modeling, optimization and information technology], 2016, No. 2 (13), pp. 11.
15. Sklyar A.G., Danilova A.V. Analiz vozmozhnostey ispol'zovaniya luchevykh metodov dlya otsenki kharakteristik rasseyaniya metallicheskikh tel [Analysis of the possibilities of using ray methods for the evaluation of the scattering characteristics of metal bodies], Modelirovanie, optimizatsiya i informatsionnye tekhnologii [Modeling, optimization and information technology], 2015, No. 3 (10), pp. 5.
16. Alimbekov A.R., Avdeenko E.A., Shevelev V.V. Metody opredeleniya rasseivayushchikh svoystv ob"ektov [Methods for determining the scattering properties of objects], Vestnik Voronezhskogo instituta vysokikh tekhnologiy [Bulletin of the Voronezh Institute of high technologies], 2013, No. 1 (20), pp. 22-24.
17. Shtager E.A., Chaevskiy E.N. Rasseyanie voln na telakh slozhnoy formy [Scattering of waves on bodies of complex shape]. Moscow: Sov. radio, 1974, 240 p.
18. Khenl Kh., Maue A., Vestpfal' K. Teoriya difraktsii [Diffraction theory]. Moscow: Mir, 1964, 428 p.
19. Ling H. RCS of waveguide cavities: a hybrid boundary-integral / modal approach, IEEE Trans. Antennas Propagat, 1990, Vol. AP-38, No. 9, pp. 1413-1420.
20. Erasov S.V. Optimizatsionnye protsessy v elektrodinamicheskikh zadachakh [Optimization processes in electrodynamic problems], Vestnik Voronezhskogo instituta vysokikh tekhnologiy [Bulletin of the Voronezh Institute of high technologies], 2013, No. 10, pp. 20-26.
21. Rutkovskaya D., Pilin'skiy M., Rutkovskiy L. Neyronnye seti, geneticheskie algoritmy i nechetkie sistemy [Neural networks, genetic algorithms and fuzzy systems]: translation from Polish I.D. Rudinskogo. Mщысщц: Goryachaya liniya – Telekom, 2013б 384 p.
22. Bandyopadhyay S., and Muthy C.A. Pattern Classification Using Genetic Algorithms, Pattern Recognition Letters, 1995, Vol. 16, pp. 801-808.
23. Marwan A.Ali, Mat Sakim H.A. Rosmiwati Mohd-Mokhtar Structure Optimization of Neural Controller Using Genetic Algorithm Technique, European Journal of Scientific Research, 2009, Vol. 38, No. 2, pp. 248-271.
24. Satyanarayana D., Kamarajan K., and Rajappan M. Genetic Algorithm Optimized Neural Networks Ensemble for Estimation of Mefenamic Acid and Paracetamol in Tablets, Genetic Algorithm Optimized Neural Networks Ensemble, Acta Chim. Slov., 2005, Vol. 52, pp. 440-449.
25. Kuncheva L.I., and Jain L.C. Designing Classifier Fusion Systems by Genetic Algorithms, IEEE Transaction on Evolutionary Computation, 2000, Vol. 33, pp. 351-373.

Comments are closed.