Article

Article title THE SCATTERING MATRIX CALCULATION FOR MICROWAVE MULTIPORTS OF COMPLEX STRUCTURE
Authors V. A. Obukhovets
Section SECTION III. RADIO ENGINEERING AND COMMUNICATION
Month, Year 03, 2018 @en
Index UDC 621.372.6
DOI
Abstract The problems of complex radioelectronic devices and systems parameters calculation at microwaves are considered. Even an approximate single-mode theory application requires to analyze rather complex multiport scheme with a large number of inputs. It is shown that the traditional methods of low-frequency circuits analyzing, modified taking into account phase delays, can not be considered acceptable when while operating at microwaves. The most effective methods are decomposition ones. However, only for some individual variants of schemes, analysis does not require high speed and a large memory. The application of universal analysis algorithms for complex circuits requires high computational costs. At the same time, for symmetric multiports, a rational consideration of geometric symmetry properties makes it possible to substantially simplify the analysis problem. Using the example of rotary symmetry multiports which are invariant with respect to the rotation through an angle 2π/N, it is shown that problem of multiport scattering matrix calculating can be reduced to the calculation of relatively simple partial two-ports. Those two-ports represent the initial multipolar network when its inputs are excited by voltages proportional to the eigenvectors of the parameter matrix. The reflection coefficient of n-th azimuthal voltage harmonic corresponds to the n-th eigenvalue of the matrix. For the mentioned above multiports, the system of matrix eigenvectors is easily determined, making the calculation much simpler. The operation of the algorithm is illustrated by the example of calculating the "star-shaped" microwave power divider.

Download PDF

Keywords Multiport; scattering matrix; eighenvectors; analysis; symmetry; partial two-port; power divider.
References 1. Hansen R.C. Fazirovannye antennye reshetky [Phased array]. Moscow: Tehnosphera, 2012, 560 p.
2. Obukhovets V.A., Kas’anov A.O. Micropoloskowye otrazhatel’nye antennye reshetky [Microstrip reflective antenna arrays]. Moscow: Radiotehnika, 2006, 240 p.
3. Sazonov D.M., Gridin A.N., Mishustin B.A. Ustroystva SWCH [Microwave device]. Moscow: Vysshaya Shkola, 1981, 295 p.
4. A’ltman G. Ustroystva swerkhvysokikh chastot [Devices of ultrahigh frequencies]: Engl. transl. / ed by I.V. Lebedeva. Moscow: Mir, 1968, 487 p.
5. Fusko V. SWCH tsepy. Analiz i avtomatizirovannoe proektirowanye [Microwave circuit. Analysis and computer-aided design]: Engl. transl. / ed by A.A. Vol’man, A.D. Muromcevoy. Moscow: Radio i swyaz’ 1990, 288 p.
6. Bankov S.E., Gutcaнt EH.M., Kurushin A.A. Reshenie opticheskikh i SVCH zadach s pomoshch'yu HFSS. Moscow: Orkada, 2012, 240 p.
7. Obukhovets V.A., Kas’yanov A.O. Shirokopolosnoe soglasovanye izluchateley antennoy reshetki systemy radiomonitoringa KW diapazona [The broadband coordination of the radiators of an antenna array system of radio monitoring HF range], Radiotehnika [Radiotechnics], 2008, No.11, pp. 60-63.
8. Obukhovets V.A. Izluchenye i rasseyanie elektromagnitnykh woln [Electromagnetic radiation and scattering], Antenny [Antennas], 2016, No. 8, pp. 6-15.
9. Obukhovets V.A. Proektirowanye fazirowannykh antennykh reshetok [Design of phased antenna arrays]. Rostow-on-Don: SFEDU. 2016, 80 p.
10. Sazonow D.M. Mnogoelementnye antennye reshetki [Multi-element antenna systems]. Moscow: Radiotekhnika, 2015, 141 p.
11. Voskresenskiy D.I., Stepanenko V.I., Filippov L.I. Proektirovanye fazirovannykh antennykh reshetok [Design of phased antenna arrays]. Moscow: Radiotehnika, 2003, 632 p.
12. Gantmakher F.R. Teoriya matrits [Matrix theory]. Moscow: Nauka, 1988, 548 p.
13. Antipenskiy R.W., Fadin A.G. Skhemotekhnicheskoe proektirovanye i modelirovanie redioelectronnykh ustroystv [Circuit design and simulation of radio electronic devices]. Moscow: Tekhnosfera, 2007, 128 p.
14. Gostev V.I., Konin V.V. Matsepura A.L. Lineynye mnogokanal’nye ustroystva SWCH [Linear multichannel ultrahigh frequency devices]. Kiev: Radioamator, 1997, 309 p.
15. Gvozdev V.I., Klyuev A.I. Chernyshenko A.M. Shirokopolosnyy mikropoloskovyy gibridnyy kol’tsevoy most [Wideband microstrip hybrid ring bridge], Electronnaya tekhnika. Ser. Electronika SWCH [Electronics. Series. Microwave electronics], 1980, Vol. 6, pp. 97-99.
16. Gvozdev V.I., Litvinenko M.Yu., Nefedov E.I. Kol’tsevye mosty na miniatyurnykh liniyakh peedachi [Ring bridges on miniature transmission lines], Radiotehnika [Radiotechnics], 1982, No. 7, pp. 83-86.
17. Kim D.I., Araki K., Naito Y. Properties of the Symmetrical Five – Port Circuit and Its Broad-Band Design, IEEE Trans. MTT, 1984, Vol. 32, No. 1, pp. 51-57.
18. Fadhel M.G., Mohammadi A. The Six-Port Technique with Microwave and Wireless Applications. ARTECH HOUSE, 2009, 233 p.
19. Fanyaev I.A., Kudin V.P. Raspredelitel’naya matritsa dlya pitaniya vosmielementnoy antennoy reshetki [Distribution matrix for power supply of eight-element antenna array], Vestnik GGTU [Bulletin of the University named after P. O. Sukhoi], 2012, No. 4, pp. 52-57.
20. Zhang H., Li L., Wu K. Software-Defined Six-Port Radar Technique for Precision Range Measurements, IEEE Sensor Journal, 2008, Vol. 8, No. 10, pp. 1745-1751.

Comments are closed.