Authors L. V. Kiselev, A. V. Medvedev
Month, Year 03, 2018 @en
Index UDC 551.46.077:629.584
Abstract Water area boundaries inspection (patrolling) is among major concerns of aquatic medium and seabed online monitoring in protected territories. When surveying large areas, a group of autonomous underwater vehicles (AUV) operates according to a uniform scenario. The task is to arrange AUV movement along the boundary and underwater surveillance. Achievement of the target is dependent on the protected water area boundaries representation, positioning means as well as AUV dynamics during performing prescribed search and exploration missions. Two options to perform the task are represented. In case of the first option water area boundary is represented as horizontal sections with peak coordinates known. If operation area boundary is exactly determined, navigational aids use the system with a single sonar beacon with precise coordinates, which is located in geometric center of plane section. In this case it is enough to know the distance to beacon and bearing to beacon or relative bearing in the beacon system of coordinates to adopt underwater vehicle motion program. In another option the boundary is determined by bathymetric contour on a bathymetric map. And such contour corresponds to the contour of predetermined survey area. AUV coordinates in preset system of reference are determined by the autonomous integrated positioning system. During group motion simulation it is intended that each vehicle possesses control over designated area and arranges its motion along plane section contour by performing its own task. In general it allows surveying the whole water area within the range of target depths. To study AUV dynamics during motion routing a simulation model based on Simulink Matlab and StateFlow Simulink complex software is used. Data for small-size hybrid (glider) vehicle designed by IMTP FEB RAS were used for AUV dynamics simulation.

Download PDF

Keywords Autonomous underwater vehicles (AUV); navigation and motion control; bathymetry; bottom relief; mapping.
References 1. Ageev M.D., Kiselev L.V., Matvienko YU.V. i dr. Avtonomnye podvodnye roboty. Sistemy i tekhnologii [Autonomous underwater robots. Systems and technologies], ed. by M.D. Ageeva. Moscow: Nauka, 2005, 400 p.
2. Inzarcev A.V., Kiselev L.V., Kostenko V.V., Matvienko YU.V., Pavin A.M., Shcherbatyuk A.F. Podvodnye robototekhnicheskie kompleksy. Sistemy, tekhnologii, primenenie [Underwater robotic systems. Systems, technologies, application] (resp. ed.V. Kiselev). Vladivostok: Dal'press, 2018б 367 з.
3. Kalyaev I.A., Gajduk A.R., Kapustyan S.G. Raspredelennye sistemy planirovaniya deнstviн kollektivov robotov [Distributed systems for planning actions of robot teams]. Moscow: YAnus-K, 2002, 292 p.
4. Earl M.G., D'Andrea R. A decomposition approach to multi-vehicle cooperative control, Robotics and Autonomous Systems, 2007, Vol. 55, No. 4, pp. 276-291.
5. Tin C. Robust multi-UAV planning in dynamic and uncertain environments, Thesis for the degree of master of science in mechanical engineering Massachusetts institute of technology, September 2004, 110 p.
6. Alami R., Fleury S., Herrb M., Ingred F., Robert F. Multi-Robot Cooperation in the MARTHA Project, IEEE Robotics & Automation Magazine, 1998, Vol. 5, No. 1, pp. 36-47.
7. Bikramaditya Das, Bidyadhar Subudhi, Bibhuti Bhusan Pati. Cooperative Formation Control of Autonomous Underwater Vehicles: An Overview, International Journal of Autom. and Comp., 2016, No. 13 (3), pp. 199-225.
8. Peng Z.H., Wang D, Chen Z.Y, Hu X.J., Lan W.Y. Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics, IEEE, Transactions on Control Systems Technology, 2013, Vol. 21, No. 2, pp. 513-520.
9. Duan H.B., Luo Q.N., Shi Y.H., Ma G.J. Hybrid particle swarm optimization and genetic algorithm for multi-UAV formation reconfiguration, IEEE Computational Intelligence Magazine, 2013, Vol. 8, No. 3, pp. 16-27.
10. Matsuda T. Maki T., Sakamaki T., and Ura T. Performance analysis on an navigation method of multiple AUVs for wide area survey, Marine Technology Society Journal, 2012, Vol. 46, No. 2, pp. 45-55.
11. Kiselev L.V., Inzarcev A.V., Bychkov I.V. i dr. Situacionnoe upravlenie gruppirovkoy avtonomnykh podvodnykh robotov na osnove geneticheskikh algoritmov [Situational control of a group of Autonomous underwater robots based on genetic algorithms], Podvodnye issledovaniya i robototekhnika [Underwater research and robotics], 2009, No. 2 (8), pp. 34-43.
12. Kozlov R.I., Maksimkin N.N., Kiselev L.V., Ul'yanov S.A. Ustoychivost' konfiguraciy gruppovogo dvizheniya avtonomnykh podvodnykh robotov v usloviyakh neopredelennosti [Stability of group motion configurations of autonomous underwater robots under uncertainty], Podvodnye issledovaniya i robototekhnika [Underwater research and robotics], 2010, No. 1 (9), pp. 40-46.
13. Bychkov I.V., Kenzin M.YU., Maksimkin N.N., Kiselev L.V. Evolyucionnye modeli marshrutizacii gruppovogo dvizheniya avtonomnykh podvodnykh robotov pri mnogocelevom dinamicheskom monitoringe morskikh akvatoriy [Evolutionary models of group motion routing of Autonomous underwater robots in multi-purpose dynamic monitoring of marine areas], Podvodnye issledovaniya i robototekhnika [Underwater research and robotics], 2014, No. 2 (18), pp. 4-12.
14. Inzartsev A.V., Kiselev L.V., Matviyenko Yu.V. et al. Integrated positioning system of autonomous underwater robot and its application in high latitudes of arctic zone, Gyroscopy and Navigation, 2010, Vol. 1, No. 2, pp. 107-112.
15. Inzartsev A.V., Kiselev L.V., Medvedev A.V., Pavin A.M. Autonomous underwater vehicle motion control during bottom objects and hard-to-reach areas investigation, In book "Motion Control", InTech, Vienna, Austria, 2010, pp. 207-228.
16. Kiselev L.V., Inzarcev A.V., Medvedev A.V. O nekotorykh zadachakh dinamiki i upravleniya prostranstvennym dvizheniem ANPA [On some problems of dynamics and spatial motion control ANPA], Podvodnye issledovaniya i robototekhnika [Underwater research and robotics], 2006, No. 2, pp. 13-26.
17. Kiselev L.V. Upravlenie dvizheniem avtonomnogo podvodnogo robota pri traektornom obsledovanii fizicheskikh poley okeana [Motion control of an Autonomous underwater robot in trajectory survey of physical fields of the ocean], Avtomatika i telemekhanika [Automation and telemechanics], 2009, No. 4, pp. 141-148.
18. Kiselev L.V., Medvedev A.V. Traektornoe obsledovanie fizicheskikh poley okeana i ikh anomaliy s pomoshch'yu ANPA [Trajectory survey of physical fields of the ocean and their anomalies using ANPA], Podvodnye issledovaniya i robototekhnika [Underwater research and robotics], 2011, No. 1 (11), pp. 24-31.
19. Bagnickit A.V., Inzarcev A.V. Avtomatizaciya podgotovki missii dlya avtonomnogo neobitaemogo podvodnogo apparata v zadachakh obsledovaniya akvatoriy [Automation of mission preparation for Autonomous unmanned underwater vehicle in the tasks of water areas survey], Podvodnye issledovaniya i robototekhnika [Underwater research and robotics], 2010, No. 2 (10), pp. 17-24.
20. Tufanov I.E., Shcherbatyuk A.F. Razrabotka algoritmov gruppovogo povedeniya ANPA v zadache obsledovaniya lokal'nyh neodnorodnostej morskoj sredy [Development of algorithms of group behavior of ANPA in the problem of survey of local inhomogeneities of the marine environment], Upravlenie bol'shimi sistemami [Management of large systems], 2012, No. 36, pp. 262-284.
21. Vaulin YU.V., Dubrovin F.S., Kushnerik A.A. i dr. Malogabaritnyy avtonomnyy neobitaemyy apparat MARK novogo pokoleniya dlya vypolneniya gruppovykh operaciy [Small-sized Autonomous uninhabited device MARK of new generation for group operations], Mekhatronika, avtomatizaciya, upravlenie [Mechatronics, automation, control], 2012, No. 6, pp. 59-65.

Comments are closed.