Article

Article title MATHEMATIC MODEL OF PROCESS OF GRANULAR SUBSTANCE’S TRANSIT, WITH USING ON SAINT-VENANT’S EQUATION
Authors A.I. Sukhinov, A.E. Chistyakov, M.D. Chekina
Section SECTION II. MATHEMATICAL MODELLING OF PHYSICAL PROCESSES
Month, Year 04, 2013 @en
Index UDC 532.5.031
DOI
Abstract The purpose of this research paper is to describe mathematical model of process of granular substance transit with using of Saint-Venant’s equation. For a system of differential equations describing the model are derived discrete counterpartsand. High accuracy of approximation is achieved through taking into account fullness of control volumes. On the basis of the model developed comprehensive program, which is produced by numerical simulation function changes at the level of distribution of solids. The results obtained in the course of the numerical experiments demonstrate the dynamics of the transport of matter, physicality, and are consistent with the expected.

Download PDF

Keywords Granular substance; Saint-Venant’s equation; substance transit; mathematical modeling; discrete model.
References 1. Сухинов А.И. Прецизионные модели гидродинамики и опыт применения в предсказании и реконструкции чрезвычайных ситуаций в Азовском море // Известия ТРТУ. – 2006. – № 3 (58). – С. 228-235.
2. Сухинов А.И., Никитина А.В., Чистяков А.Е. Моделирование сценария биологической реабилитации Азовского моря // Математическое моделирование. – 2012. – Т. 24, № 9. – С. 3-21.
3. Сухинов А.И., Тимофеева Е.Ф. Чистяков А.Е. Построение и исследование дискретной математической модели расчета прибрежных волновых процессов // Известия ЮФУ. Технические науки. – 2011. – № 8 (121). – С. 22-32.
4. Сухинов А.И., Чекина М.Д. Математическое моделирование процессов накопления и фильтрации осадков с помощью супервычислительных систем // Известия ЮФУ. Технические науки. – 2010. – № 6 (107). – С. 103-113.
5. Сухинов А.И., Чистяков А.Е. Адаптивный модифицированный попеременно-
треугольный итерационный метод для решения сеточных уравнений с несамосопряженным оператором // Математическое моделирование. – 2012. – Т. 24, № 1. – С. 3-21.
6. Сухинов А.И., Чистяков А.Е. Параллельная реализация трехмерной модели гидродинамики мелководных водоемов на супервычислительной системе // Вычислительные методы и программирование: Новые вычислительные технологии. – 2012. – Т. 13. – С. 290-297.
7. Сухинов А.И., Чистяков А.Е., Алексеенко Е.В. Численная реализация трехмерной модели гидродинамики для мелководных водоемов на супервычислительной системе // Математическое моделирование. – 2011. – Т. 23, № 3. – С. 3-21.
8. Сухинов А.И., Чистяков А.Е., Бондаренко Ю.С. Оценка погрешности решения уравнения диффузии на основе схем с весами // Известия ЮФУ. Технические науки. – 2011. – № 8 (121). – С. 6-13.
9. Сухинов А.И., Чистяков А.Е., Проценко Е.А. Двумерная гидродинамическая модель, учитывающая динамическое перестроение геометрии дна мелководных водоемов // Известия ЮФУ. Технические науки. – 2011. – № 8 (121). – С. 159-167.
10. Сухинов А.И., Чистяков А.Е., Проценко Е.А. Построение дискретной двумерной математической модели транспорта наносов // Известия ЮФУ. Технические науки. – 2011. – № 8 (121). – С 32-44.
11. Сухинов А.И., Чистяков А.Е., Тимофеева Е.Ф., Шишеня А.В. Математическая модель расчета прибрежных волновых процессов // Математическое моделирование. – 2012. – № 6 (107). – С. 66-77.
12. Чистяков А.Е. Об аппроксимации граничных условий трехмерной модели движения водной среды // Известия ЮФУ. Технические науки. – 2010. – № 6 (107). – С. 66-77.
13. Чистяков А.Е. Теоретические оценки ускорения и эффективности параллельной реализации ПТМ скорейшего спуска // Известия ЮФУ. Технические науки. – 2010. – № 6 (107). – С. 237-249.

Comments are closed.