Article

Article title RESEARCH OF PHYSICAL PROCESSES IN THE RECTIFICATION COLUMN WHILE REGENERATING DIETHYLENE GLYCOL
Authors S. E. Abramkin, S. E. Dushin, Yu. N. Serditov
Section SECTION II. MODELING OF COMPLEX SYSTEMS AND PROCESSES
Month, Year 05, 2018 @en
Index UDC 681.51.011
DOI
Abstract The purpose of the research is to study the physical processes in the distillation column during the regeneration of diethylene glycol. The research is based on mathematical modeling. The regeneration process is used to restore the properties of diethylene glycol in order to reuse it in the process. This process determines the quality indicators of absorption dehydration of natural gas. In this regard, the following task is of current interest: studying heat and mass transfer processes in a distillation column with the aim to develop a system for their automatic control in various dynamic situations. Dynamic situations are caused by changes in the both external factors (flow, temperature and pressure) and the internal factors (meaning the walls of the apparatus, clogging of the flow area of the pipelines, etc.). Research of this kind is impossible without involvement of the mathematical modeling, since this technological process is carried out at a hazardous production facility. The tasks are to study the physical essence of the binary rectification process; definitions of devices that have dominant influence on the process and assumptions in order to develop mathematical models of the processes occurring in them; development of mathematical models of heat and mass transfer processes for a distillation column, air cooler and evaporator. The physical bases of the technological process were studied, assumptions were determined, mathematical models of a distillation column, an air-cooled air cooler and an evaporator with fired heating were developed, and initial and boundary conditions were determined. The developed mathematical models are distinguished by their spatial distribution and taking into account the dependence of the vapor phase velocity on temperature, which makes it possible to control adequately the processes if the conditions are changed. The dynamic mathematical model of heat and mass transfer processes in a distillation column is distinguished by the nonlinear dependence of the heat and mass flows of the absorbent and steam and allows to study their mutual influence during the heat and mass transfer process. The results of the study show following: in order to control the heat and mass transfer processes in the distillation column during that process it is necessary to regulate the heat exchange processes in the evaporator and air cooling apparatus.

Download PDF

Keywords Mathematical model; regeneration; rectification; mass exchange; heat exchange.
References 1. Abramkin S.E., Dushin S.E. Modelirovanie upravlyaemykh protsessov absorbtsionnoy osushki prirodnogo gaza [Modeling of controlled processes of natural gas absorption dewatering]. Saint-Petersburg: SPbGETU «LETI», 2015, 160 p.
2. Anisimov I.V. Avtomaticheskoe regulirovanie protsessa rektifikatsii [Automatic control of the process of rectification]. Moscow: Gos. nauchno-tekhnicheskoe izdatel'stvo neftyanoy i gorno-toplivnoy literatury, 1961, 180 p.
3. Aleksandrov I.A. Peregonka i rektifikatsiya v neftepererabotke [Distillation and rectification in oil refining]. Moscow: Himiya, 1981, 352 p.
4. Zharov V.T., Serafimov L.A. Fiziko-khimicheskie osnovy distillyatsii i rektifikatsii [Physicochemical basis of distillation and rectification]. Leningrad: Himiya, 1975, 240 p.
5. Bagaturov S.A. Osnovy teorii i rascheta peregonki i rektifikatsii [Fundamentals of the theory and calculation of distillation and rectification]. Moscow: Himiya, 1974, 440 p.
6. Petlyuk F.B., Serafimov L.A. Mnogokomponentnaya rektifikatsiya. Teoriya i raschet [Multicomponent rectification. Theory and calculation]. Moscow: Himiya, 1983, 304 p.
7. Taranenko B.F., German V.T. Avtomaticheskoe upravlenie gazopromyslovymi ob’’ektami [Automatic control of gas facilities]. Moscow: Nedra, 1976, 213 p.
8. Bekirov T.M., Lanchakov G.A. Texnologiya obrabotki gaza i kondensata [The methods for gas and condencate processing]. Moscow: Nedra, 1999, 596 p.
9. Zel`venskiy Ya.D., Titov A.A., Shaly`gin V.A. Rektifikatsiya razbavlennykh rastvorov [Rectification of diluted solutions]. Leningrad: Himiya, 1974, 216 p.
10. Kasatkin A.G. Osnovnye processy i apparaty khimicheskoy tekhnologii [Basic processes and apparatuses of chemical technology]. Moscow: Himiya, 1973, 752 p.
11. Nikolaev V.V., Busygina N.V., Busygin I.G. Osnovnye processy fizicheskoy i fizicheskoy-khimicheskoy pererabotki gaza [The main processes of physical and physical-chemical gas convertion]. Moscow: Nedra, 1998, 184 p.
12. Aleksandrov I.A. Rektifikatsionnye i absorbtsionnye apparaty. Metody rascheta i osnovy konstruirovaniya [Rectification and absorption apparatus. Calculation methods and design principles]. Moscow: Himiya, 1978, 280 p.
13. Anisimov I.V., Bodrov V.I., Pokrovskiy V.B. Matematicheskoe modelirovanie i optimizatsii rektifikatsionnykh ustanovok [Mathematical modeling and optimization of rectification plants]. Moscow: Himiya, 1975, 216 p.
14. Isakovich R.Ya., Loginov V.I., Popad`ko V.E. Avtomatizatsiya proizvodstvennykh protsessov neftyanoy i gazovoy promyshlennosti [Automation of processes in the oil and gas industry]. Moscow: Nedra, 1983, 424 p.
15. Abramkin S.E., Dushin S.E. Razrabotka matematicheskoy modeli tekhnologicheskogo kompleksa «Absorbtsiya – Desorbtsiya» [Development of the mathematical model of the technological complex "Absorption - Desorption"], Izvestiya SPbGETU «LETI» [News of SPbGETU "LETI"], 2011, Issue 1, pp. 29-33.
16. Abramkin S.E., Grudyaeva E.K., Dushin S.E. Sistema regulirovaniya teploobmennogo protsessa v apparate vozdushnogo okhlazhdeniya [Heat exchanger control system in condenser], Izvestiya SPbGETU «LETI» [News of SPbGETU "LETI"], 2011, Issue 6, pp. 35-40.
17. Abramkin S.E., Dushin S.E., Polyashova K.A. Matematicheskaya model' upravlyaemogo teploobmennogo protsessa v isparitele [Mathematical model of controlled heat exchange process in the evaporator], Izvestiya SPbGETU «LETI» [News of SPbGETU "LETI"], 2011, Issue 9,
pp. 32-36.
18. Ismagilov R.N., Abramkin S.E., Dushin S.E. Sostoyanie i perspektivy razvitiya avtomatizatsii ustanovok kompleksnoy podgotovki gaza na UNGKM [The state and prospects of development of automation of complex gas treatment plants at Urengoy oil and gas condensate field], Perspektivnye napravleniya razvitiya Urengoyskogo kompleksa: Sb. nauch. tr. OOO «Gazprom dobycha Urengoy» [Perspective directions of development of the Urengoi complex, Gazprom Dobycha Urengoy]. M.: Nedra, 2018, pp. 271-281.
19. Abramkin S.E., Dushin S.E., Serditov Yu.N. Issledovanie vzaimosvyazannykh teplo- i massoobmennykh protsessov v rektifikatsionnoy kolonne [Research of Interrelated Heat and Mass Transfer Processes in a Rectification Column], XXI Mezhdunar. konf. po myagkim vychisleniyam i izmereniyam (SCM-2018): Sb. dokl. v 2-kh t. T. 1. Sankt-Peterburg. 23–25 maya 2018 g. [XXI International Conference on Soft Computing and Measurements (SCM-2018). Vol. 1. 23-25 May, 2018. St. Petersburg, Russia: Saint Petersburg Electrotechnical University “LETI”. Saint Petersburg: SPbGETU «LETI», pp. 340-343.
20. Abramkin S.E. [et al.]. Selection of the Strategy for Process Control of the Diethylene Glycol Rectification, Proceedings of the 2018 IEEE Northwest Russia Conference on Mathematical Methods in Engineering and Technology (MMET NW). 10-14 September, 2018. St. Petersburg, Russia: Saint Petersburg Electrotechnical University “LETI”, pp. 50-53.

Comments are closed.