Article

Article title MATHEMATICAL MODEL OF THERMAL PROCESSES IN A HEAT-ELECTRIC POWER STATION STEAM BOILER
Authors A. L. Liashenko
Section SECTION II. MODELING OF COMPLEX SYSTEMS AND PROCESSES
Month, Year 05, 2018 @en
Index UDC 681.5
DOI
Abstract The necessity of regulating the supply in boiler units, regulating the pressure in the boiler drum and maintaining the technological parameters at a given level, as well as possible emergencies that may arise in case of violation of technological processes are considered. The BKZ-75-39 GMA steam boiler installed at a thermal power plant is considered as an object of control. The article describes the steam boiler. To monitor the parameters of the steam boiler at a heat electric power station, it is proposed to consider the boiler unit as an object with distributed parameters. To develop a mathematical model of the control object, the functional scheme of this boiler with the main equipment and technological flows of liquids and gases was considered. A method for modeling objects of this class as objects with distributed parameters has been developed. Consideration of the processes occurring in the screen tubes made it possible to draw up differential equations of motion describing the flow of one- and two-phase working medium in the tubes of the steam generator. The obtained equations were written in compliance with the conditions for maintaining a balance of mass, energy and momentum. The developed method of mathematical modeling of heat distribution in the screen tubes of the boiler unit made it possible to compose a mathematical model for the object in question.This mathematical model turned out to be quite complex, and it is impossible to solve the resulting system of partial differential equations analytically (select the transfer function).For the numerical analysis of the control object under consideration, a discrete model of equations and a computational algorithm were compiled. In the process of compiling discrete models, the problems of “matching” the boundary conditions, ensuring the stability of the computational scheme were solved, and discretization steps were chosen according to spatial variables. For computer simulation was specially developed software. With it, we calculated the temperature values at the control points. The values obtained by simulation, coincided with the readings of sensors that are installed on a real object.The presented mathematical model will make it possible to develop a training complex for the training of operating personnel at a thermal power station, which allows simulating various modes of operation of the BKZ type boiler installations.

Download PDF

Keywords Steam boiler; objects with distributed parameters; differential equations; modeling; system analysis; control; monitoring; diagnostics; information processing.
References 1. Aleksandrov N.L. Lektsii po teorii ustoychivosti gidrodinamicheskikh i teplovykh protsessov: ucheb. posobie dlya studentov vuzov [Lectures on the theory of sustainability of hydrodynamic and thermal processes: A manual for university students]. Moscow: MFTI, 2000, 97 p.
2. Boyko E.A. Kotel'nye ustanovki i parogeneratory: ucheb. posobie [Boiler installations and steam generators: textbook]. Krasnoyarsk: FAO RF GOUVPO KGTU, 2005, 292 p.
3. Breus V.I., Belyakov I.I. Analiz temperaturnogo rezhima topochnykh ekranov kotlov TGME-464 [Analysis of the temperature regime of the flue screens of boilers TGME-464], Elektricheskie stantsii [Electric stations], 1986, No. 8.
4. Gedzhadze I.Yu., Shutyaev V.P. Ob odnom metode resheniya zadachi nablyudeniya dlya nestatsionarnogo temperaturnogo polya [On a method for solving the observation problem for a nonstationary temperature field], Izvestiya akademii nauk. Teoriya i sistemy upravleniya [Proceedings of the Academy of Sciences. Theory and Control Systems], 2000, No. 1, pp. 25-34.
5. Galdin V.D. Parovye i vodogreynye kotly: ucheb. posobie [Steam and hot water boilers: a tutorial]. Omsk: SibADI, 2011, 47 p.
6. Imaev D.Kh., Stanislavski V. Issledovanie dinamiki ierarkhicheskikh sistem na primere parogeneratorov [Study of the dynamics of hierarchical systems on the example of steam generators]. Saint Petersburg: Izd-vo SPbGETU "LETI", 2011, 220 p.
7. Kutepov A.M., Sterman L.S., Styushin N.G. Gidrodinamika i teploobmen pri paroobrazovanii [Hydrodynamics and heat exchange during vaporization]. Moscow: Vysshaya shkola, 1977.
8. Lesnichuk A.N., Loshkarev V.A., Pletnev G.P. i dr. Ispol'zovanie signala po teplovospriyatiyu topochnykh ekranov dlya otsenki teplonapryazhennosti poverkhnostey nagreva barabannogo kotla [The use of the signal on the heat of the flue screens to assess the thermal density of the heating surfaces of the drum boiler], Vestnik MEI [MPEI Vestnik], 1999, No. 3.
9. Lyashenko A.L., Zolotov O.I. Matematicheskoe modelirovanie raspredelennogo ob"ekta upravleniya s podvizhnym istochnikom vozdeystviya [Mathematical modeling of a distributed control object with a mobile source of influence], Nauchno-tekhnicheskie vedomosti SPBGPU. Seriya «Informatika. Telekommunikatsii. Upravlenie» [Scientific and technical statements SPBGPU. Series “Informatics. Telecommunications. Management”], 2011, No. 1 (115), pp. 113-117.
10. Lyashenko A.L. Sintez raspredelennoy sistemy upravleniya teplovymi polyami v parogeneratornykh ustanovkakh [Synthesis of a distributed control system for thermal fields in steam generating sets], Sb. trudov 7-y Vserossiyskoy nauchnoy konferentsii «Sistemnyy sintez i prikladnaya sinergetika» (SSPS-2015) [Proceedings of the 7th All-Russian Scientific Conference "System Synthesis and Applied Synergetics" (JCSS-2015)]. Taganrog: Izd-vo YuFU, 2015, pp. 131-138.
11. Lyashenko A.L., Il'yushin YU.V., Kucherenko I.A., Novozhilov I.M. Reshenie zadachi modelirovaniya povedeniya temperaturnogo polya v raspredelennykh ob"ektakh upravleniya [Solving the problem of modeling the temperature field behavior in distributed control objects], Izvestiya SPbGETU «LETI» [News SPbGETU "LETI"], 2014, No. 7, pp. 48-51.
12. Lyashenko A.L. Razrabotka programmnogo obespecheniya dlya modelirovaniya teplovykh poley v ob"ektakh s raspredelennymi parametrami [Development of software for modeling thermal fields in objects with distributed parameters], Trudy XII Mezhdunarodnoy nauchno-prakticheskoy konferentsii molodykh uchenykh, studentov i aspirantov «Analiz i prognozirovanie sistem upravleniya [Proceedings of the XII International Scientific and Practical Conference of Young Scientists, Students and Postgraduates "Analysis and Control Systems Forecasting. Part II]. Saint Petersburg: SZTU, 2011, pp. 55-63.
13. Magidey P.L., Vorotnikov E.G. Izmenenie usloviy lokal'nogo i summarnogo teploobmena v topke pri retsirkulyatsii gazov pod fakel [Changing the conditions of local and total heat exchange in the furnace when gas is recycled under the torch], Energomashinostroenie [Power Machinery], 1972, No. 3.
14. Pershin I.M. Sintez sistem s raspredelennymi parametrami [Synthesis of systems with distributed parameters]. Pyatigorsk, 2002, 212 p.
15. Rabochaya dokumentatsiya “Avtomatizirovannaya sistema upravleniya kotlom BKZ-75-39 GMA TETS-3 kotel № 3 AO «Svetogorsk»”. Rukovodstvo operatora [Working documentation “Automated control system for boiler BKZ-75-39 GMA CHPP-3, boiler No. 3 of Svetogorsk JSC”. Operator's manual]. Saint Petersburg, 2014.
16. Rapoport E.Ya. Strukturnoe modelirovanie ob"ektov i sistem upravleniya s raspredelennymi parametrami [Structural modeling of objects and control systems with distributed parameters]. Moscow: Vysshaya shkola, 2003, 299 p.
17. Sokolov V.V., Litvinova L.A. Teplovye nagruzki v topke kotla energobloka 800 MVt pri szhiganii prirodnogo gaza [Thermal loads in the furnace of the boiler of a 800 MW power unit when burning natural gas], Teploenergetika [Thermal Engineering], 1998, No. 5.
18. Stanislavski V., Imaev D.Kh. Dinamicheskie modeli pryamotochnykh parogeneratorov kak ob"ektov upravleniya ierarkhicheskoy struktury [Dynamic models of direct-flow steam generators as control objects of a hierarchical structure], Tr. Mezhdunar. nauch.-praktich. konf. “Teoreticheskie i prakticheskie problemy razvitiya elektroenergetiki Rossii” (27-28 iyunya 2002) [Pr. International scientific practical conf. “Theoretical and practical problems of the development of the electric power industry in Russia” (June 27-28, 2002). Saint Petersburg: SPbGTU, 2002, pp. 203-203.
19. Tablitsa fizicheskikh velichin [Table of physical quantities], ed. by akad. Kikoina I.K. Moscow: Avtomizdat, 752 p.
20. Teplovye i atomnye elektricheskie stantsii [Thermal and nuclear power plants], under total. ed. V.A. Grigor'eva, V.M. Zorina. 3 ed. Moscow: MEI, 2003.
21. Kholshchev V.V. Teplovye nagruzki i temperaturnyy rezhim ekrannykh trub barabannogo kotla gazoplotnogo ispolneniya, rabotayushchego na mazute [Heat loads and temperature conditions of screen tubes of a gas-tight drum-type boiler operating on fuel oil], Teploenergetika [Thermal Engineering], 1986, No. 10.
22. Shchetkin V.S. Issledovanie rabotosposobnosti trub frontovogo ekrana kotla BKZ-420-140 NGM Bobruyskoy TETS-2 [Investigation of the performance of pipes of the frontal screen of the boiler BKZ-420-140 NGM Bobruiskaya CHPP-2] Teploenergetika [Thermal Engineering],, 1985, No. 1.
23. Tsvetkov F.F., Grigor'ev B.A. Teplomassoobmen [Heat and Mass Transfer]. Moscow: Izd-vo MEI, 2005, 550 p.

Comments are closed.