Article

Article title THE MODEL OF BOOSTING BIOINSPIRED ALGORITHMS FOR SOLVING PROBLEMS OF CLASSIFICATION AND CLUSTERING
Authors Yu. A. Kravchenko, A. N. Natskevich, I. O. Kursitys
Section SECTION II. MODELING OF COMPLEX SYSTEMS AND PROCESSES
Month, Year 05, 2018 @en
Index UDC 002.53:004.89
DOI
Abstract In the article methods of application of boosting models for solving clustering and classification problems are considered, comparative characteristics of these models are described. A boosting model has also been developed to solve the clustering problem. The statement of the problem is given. An analytical review of some promising developments among modern and classical clustering algorithms is presented, their advantages and disadvantages are estimated. A modified boosting algorithm for solving the clustering problem is presented. The approaches of boosting and bagging are compared, the merits and drawbacks of the approaches considered are estimated. The review of algorithms used in the process of boosting is given. As an example of solving the problem of data clustering, a new model for solving optimization problems is presented, based on the use of clustering algorithms weighted set and their boosting based on the ideas of bioinspired algorithms. The heuristic of the proposed boosting algorithm is the use of a probability matrix, which allows a weighted estimation of the learning algorithms quality result to obtain the highest quality of the solution to the clustering problem, and also use weighted data sets containing information on the probability of each individual element occurrence in a particular cluster. The conducted researches showed that the solutions obtained by using the algorithm boosting approach allow to obtain results that are not inferior or superior in quality to the variants obtained by the known algorithms.

Download PDF

Keywords Boosting; clustering; classification; evolutionary modeling; swarm algorithms; machine learning; bioinspired algorithms.
References 1. Ka-Chun Wong. A Short Survey on Data Clustering Algorithms, IEEE Second International Conference on Soft Computing and Machine Intelligence, 2015.
2. IBM Consumer products industry blog. Industry insights. Available at: https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/ (accessed 20 May .2018).
3. Mayr A., Binder H., Gefeller O., Schmid M. The Evolution of Boosting Algorithms – From Machine Learning to Statistical Modelling, Methods Inf. Med., 2014, Vol. 53, pp. 419-427.
4. Donkuan X. Yingjie T. A comprehensive survey of clastering algorithms, Annals of Data Science, 2015, Vol. 2, Issue 2, pp. 165-193.
5. Zaycev A.A., Kureychik V.V., Polupanov A.A. Obzor evolyucionnykh metodov optimizacii na osnove roevogo intellekta [Overview of evolutionary optimization techniques based on swarm intelligence], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 12 (113), pp. 7-12.
6. Kureichik V.V., Kravchenko Y.A. Bioinspired algorithm applied to solve the travelling salesman problem, World Applied Sciences Journal, 2013, Vol. 22, No. 12, pp. 1789-1797.
7. Gladkov L.A., Kureichik V.V., Kravchenko Y.A. Evolutionary algorithm for extremal subsets comprehension in graphs, World Applied Sciences Journal, 2013, Vol. 27, No. 9, pp. 1212-1217.
8. Kureychik V.V., Kureychik V.M., Sorokoletov P.V. Analiz i obzor modeley evolyucii [Analysis and review of models of evolution], Izvestiya Rossiyskoy akademii nauk. Teoriya i sistemy upravleniya [Journal of Computer and Systems Sciences International], 2007, No. 5, pp. 114-126.
9. Rodzin S.I., Kureychik V.V. Sostoyanie, problemy i perspektivy razvitiya bioevristik [State, problems and prospects of bio-heuristics development], Programmnye sistemy i vychislitel'nye metody [Software systems and computational methods], 2016, No. 2, pp. 158-172.
10. Kureychik V.V., Bova V.V., Kureychik Vl.Vl. Kombinirovannyy poisk pri proektirovanii [Combined search in design], Obrazovatel'nye resursy i tekhnologii [Educational resources and technologies], 2014, No. 2 (5), pp. 90-94.
11. Kureychik V.V., Kureychik Vl.Vl. Bioispirirovannyy poisk pri proektirovanii i upravlenii [Biospherology search in the design and management], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 11 (136), pp. 178-183.
12. Busting. Osobennosti primeneniya v oblasti mashinnogo obucheniya [Boosting. Features of application in the field of machine learning]. Available at: http://www.machinelearning.ru/ wiki/index.php?title=%D0%91%D1%83%D1%81%D1%82%D0%B8%D0%BD%D0%B3 (accessed 10 June 2018).
13. Druzhkov P.N., Zolotykh N.Yu., Polovinkin A.N. Programmnaya realizaciya algoritma gradientnogo bustinga derev'ev resheniy [Software implementation of the algorithm is gradient boosting of decision trees], Vestnik Nizhnegorodskogo universiteta im. N.I. Lobochevskogo [Vestnik of Lobachevsky University of Nizhni Novgorod], 2011, No. 1, pp. 193-200.
14. Boosting Algorithms: a review of mehods, theory and applications. Available at: https://fenix.tecnico.ulisboa.pt/downloadFile/3779579716974/Boosting%20-%20Ferreira%20and%20Figueiredo%202013.pdf (accessed 29 April 2018).
15. Mayr A., Binder H., Gefeller O., Schmid M. The evolution of boosting algorithms – From machine learning to statistical modeling, Methods iInf Med., 2014, Vol. 53 (6), pp. 419-427.
16. Freund Y. and Schapire R. Experiments with a new boosting algorithm, In Thirteenth International Conference on Machine Learning. Bari, Italy, 1996, pp. 148-156,
17. Freund Y. and Schapire R. A decision-theoretic generali zation of on-line learning and an application to boosting, Journal of Computer and System Sciences, 1997, Vol. 55 (1), pp. 119-139.
18. Kuncheva L. Combining Pattern Classifiers: Methods and Algorithms. Wiley, 2004.
19. Radha C, Rong J, Timothy C.H, Anil K.J. Scalable Kernel Clustering: Approximate Kernel k-means. Computer Vision and Pattern Recognition, 2014.
20. Kureychik V.M., Kureychik V.V., Rodzin S.I. Modeli parallelizma evolyucionnykh vychisleniy [Models of parallelism of evolutionary calculations], Vestnik Rostovskogo gosudarstvennogo universiteta putey soobshcheniya [Vestnik RGUPS], 2011, No. 3 (43), pp. 93-97.
21. Kureychik V.M., Kureychik V.V., Rodzin S.I., Gladkov L.A. Osnovy teorii evolyucionnykh vychisleniy [Fundamentals of the theory of evolutionary computation]. Rostov-on-Don: YuFU, 2010.
22. Rodzin S.I., Kureychik V.V. Teoreticheskie voprosy i sovremennye problemy razvitiya kognitivnykh bioinspirirovannykh algoritmov optimizacii [Theoretical questions and contemporary problems of the development of cognitive bio-inspired algorithms for optimization], Kibernetika i programmirovanie [Cybernetics and programming], 2017,
No. 3, pp. 51-79.

Comments are closed.