Article

Article title NON-LINEAR CONTROL FOR A GROUP OF OMNI-WHEEL ROBOTS
Authors G. E. Veselov, A. A. Sklyarov, M. N. Garcia
Section SECTION III. AUTOMATION AND CONTROL
Month, Year 05, 2018 @en
Index UDC 681.51
DOI
Abstract The paper presents a solution of the problem of non-linear control law design for a group of mobile robots. A mobile robot on omni-directional wheels was chosen as an agent of the swarm, because this kind of mobile robot is the most maneuverable and designed to work in closed spaces. The type of chassis is designed to perform tasks in warehouses. To take into account the nonlinear characteristics of this type of mobile robot chassis, the analysis of the mathematical model of a mobile robotic platform was considered. The paper also provides a survey of modern methods and approaches to group control, discusses the use of methods for optimizing collective behavior, artificial potential fields, heuristic methods based on the recognition of the situation and the development of appropriate actions and methods based on the use of fuzzy logic. It is shown that when applying these methods, the problem of analyzing the stability of the obtained closed-loop control system is complex. From the survey of modern methods, the basic conditions imposed on the synthesized law of group control of robots are highlighted. These conditions are adaptability to the external environment and asymptotically stable movement of mobile robots to a given point in space with a given type of order. Therefore, the paper presents a reasons for the use of new non-linear approaches to the control of mobile robots’ swarm, in particular, synergetic control theory. The main method, within the framework of this theory, is the method of analytical design of aggregated regulators, which allows to synthesize control laws for complex non-linear systems of large dimensions without applying linearization procedures or other simplifications, therefore this method is used to synthesize synergetic laws of group control. The application of the method of analytical design of aggregated regulators allows us to solve the problem of studying the stability of the resulting closed-loop control system, due to the sequential decomposition of the original system, which is shown in the analytical synthesis procedure of the group control strategy of mobile robots using full non-linear motion models.

Download PDF

Keywords Group control; omni-wheel robot; non-linear mathematical model; synergetic control theory.
References 1. Avanzini P.P., Royer E., Thuilot B., and Durutin J.-P. Using monocular visual SLAM to manually convoy a fleet of automatic urban vehicles, in Proc. IEEE Int. Conf. Robotics Automation, Karlsruhe, Germany, 2013, pp. 3219-3224.
2. Petrov P. A mathematical model for control of an autonomous vehicle convoy, Trans. syst. Control, 2008, Vol. 3, No. 9, pp. 835-848.
3. Antonelli G., Arrichiello F., Caccavale F., and Marino A. Decentralized centroid and formation control for multi-robot systems, in IEEE Int. Conf. Robotics Automation, Karlsruhe, Germany, 2013, pp. 3511-3516.
4. Kitts C.A. and Mas I. Cluster space specification and control of mobile multirobot systems, IEEE/ASME Trans. Mechatronics, Apr. 2009, Vol. 14, No. 2, pp. 207-218.
5. Kalyaev I.A., Gayduk A.R., Kapustyan S.G. Modeli i algoritmy kollektivnogo upravleniya v gruppakh robotov [Models and algorithms of collective control in groups of robots]. Moscow: Fizmatlit, 2009, 278 p.
6. Kalyaev I.A., Gayduk A.R., Kapustyan S.G. Raspredelennye sistemy planirovaniya deystviy kollektivov robotov [Distributed systems for planning actions of robot teams]. Moscow: YAnus-K, 2002, 292 p.
7. Barbashova T.F., Kiril'chenko A.A., Kolganov M.A. Nekotorye aspekty ispol'zovaniya metoda potentsialov pri upravlenii mobil'nymi robotami [Some aspects of using the method of potentials in the management of mobile robots]. Moscow: Izd-vo IPM im. M.V. Keldysha RAN, 2004, 23 p.
8. Ryzhova T.P. Upravlenie kollektivom mobil'nykh robotov [Management team of mobile robots], Trudy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii "Ekstremal'naya robototekhnika" [Proceedings of the international scientific and technical conference "Extreme robotics"], 2011, pp. 281-287.
9. Gazi V. Swarm Aggregations Using Artificial Potentials and Sliding Mode Control, Proc. of the IEEE Conf. on Decision and Control. Maui, Hawaii, 2003, pp. 2041-2046.
10. Platonov A.K., Kiril'chenko A.A., Kolganov M.A. Metod potentsialov v zadache vybora puti: istoriya i perspektivy [The method of potentials in the problem of path selection: history and prospects], Preprint instituta prikladnoy matematiki imeni M.V. Keldysha [Preprint of Keldysh Institute of applied mathematics], 2001, No. 1, pp. 1-32.
11. Bennet Derek J., Mclnnes Colin R. Distributed control of multi-robot systems using bifurcating potential fields, Robotics and Autonomous Systems, 2010, No. 58, pp. 256-264.
12. Fierro R., Das A., Spletzer J., Esposito J., Kumar V., Ostrowski J. et al. A Framework and Architecture for Multi-Robot Coordination, Intern. J. of Robotics Research, 2002, Vol. 21,
No. 10-11, pp. 977-995.
13. Nicolescu M., Mataric M. Experience-based representation construction: learning from human and robot teachers, Proc. of the IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems, 2001, Vol. 2, pp. 740-745.
14. Parker L. Alliance: An Architecture for Fault Tolerant Multi-Robot Cooperation, IEEE Transactions on Robotics and Automation, 1998, Vol. 14, No. 2, pp. 220-240.
15. Bazoula A., Djouadi M., Maaref H. Formation Control of Multi-Robots via Fuzzy Logic Technique, Intern. J. of Computers, Communications & Control, 2008, Vol. 3, pp. 179-184.
16. Bazoula A., Maaref H. Fuzzy Separation Bearing Control for Mobile Robots Formation, Intern. J. of Aerospace and Mechanical Engineering, 2007, pp. 14-19.
17. Benbouabdallah К., Qi-dan Z. A Fuzzy Logic Behavior Controller for a Mobile Robot Path Planning in Multi-obstacles Environment, Research J. of Applied Sciences, Engineering and Technology, 2013, Vol. 5 (14), pp. 3835-3842.
18. Bemian S., de Oliveira M., Edan Y., Jamshidi M. Hierarchical Fuzzy Behavior-Based Control of a Multi-Agent Robotic System, Proc. of the 7 l Mediterranean Conf. on Control and Automation (MED), 1999, pp. 2024-2032.
19. Sklyarov A.A., Pokhilina T.E. Sintez nelineynogo zakona upravleniya mobil'noy robototekhnicheskoy platformoy na kolesakh Ilona [Synthesis of nonlinear control law for a mobile robot platform on wheels Ilona], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2017, No. 3 (188), pp. 121-130.
20. Vazques J.A., Velasco-Villa M. Path-Tracking Dynamical Model Based Control of an Omnidirectional Mobile Robot, Proceedings of the 17th World Congress “The International Federation of Automatic Control”, 2008, pp. 5365-5373.
21. Kolesnikov A.A. Sinergeticheskaya teoriya upravleniya [Synergetic control theory]. Moscow: Energoatomizdat, 1994, 344 p.
22. Kolesnikov A.A. Sinergeticheskaya teoriya upravleniya: kontseptsii, metody, tendentsii razvitiya [Synergetic control theory: concepts, methods, and tendencies of development], Izvestiya TRTU [Izvestiya TSURE], 2001, No. 5 (23), pp. 7-27.
23. Kolesnikov A.A. Sinergeticheskaya kontseptsiya sistemnogo sinteza: edinstvo protsessov samoorganizatsii i upravleniya [Synergetic concept of system synthesis: unity of self-organization and management processes], Izvestiya TRTU [Izvestiya TSURE], 2006, No. 6 (51), pp. 10-38.
24. Kolesnikov A.A., Veselov G.E., Popov A.N., Mushenko A.S. i dr. Sinergeticheskie metody upravleniya slozhnymi sistemami: mekhanicheskie i elektromekhanicheskie sistemy [Synergetic methods of control of complex systems: mechanical and Electromechanical systems]. Moscow: KomKniga, 2006, 304 p.
25. Veselov G.E. Sinergeticheskiy podkhod k sintezu ierarkhicheskikh sistem upravleniya [A synergistic approach to the synthesis of hierarchical control systems], Izvestiya TRTU [Izvestiya TSURE], 2006, No. 6 (61), pp. 73-84.
26. Veselov G.E. Prikladnaya teoriya sinergeticheskogo sinteza ierarkhicheskikh sistem upravleniya [Applied theory of synergetic synthesis of hierarchical control systems], Izvestiya TRTU [Izvestiya TSURE], 2006, No. 5 (60), pp. 66-76.
27. Veselov G.E., Sklyarov A.A., Sklyarov S.A. Sinergeticheskiy podkhod k upravleniyu bespilotnym letatel'nym apparatom [A synergetic approach to control an unmanned aerial vehicle], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 5 (142), pp. 65-70.
28. Veselov G.E., Popov A.N., Radionov I.A. Synergetic control of asynchronous electric traction drives of locomotives, Journal of Computer and Systems Sciences International, July 2014, Vol. 53, Issue 4, pp. 587-600.
29. Kolesnikov A.A. Introduction of synergetic control, Proc. American Control Conference (ACC-2014), Portland, OR, USA, 4-6 June 2014, pp. 3013-3016. Doi: 10.1109/ACC2014.6859397.
30. Veselov G.E., Popov А.N., Radionov I.A., Mushenko A.S. Adaptive Power Saving Control for Traction Asynchronous Electrical Drive: Synergetic Approach, Proc. IEEE International Energy Conference (EnergyCon 2014), Dubrovnik, Croatia, 13-16 May 2014, pp. 1446-1453. Doi: 10.1109/ENERGYCON.2014.6850613.

Comments are closed.