Article

Article title CREATION OF THE IMAGE OF THE BIOOBJECT SECTIONS USING THE CHARACTERISTICS OF FABRIC HARMONICA IN THE TRANSMITTED ACOUSTIC SIGNAL WAVE
Authors V. V. Grivtsov
Section SECTION II. METHODS AND DEVICES IN MEDICAL AND BIOLOGICAL PRACTICE
Month, Year 06, 2018 @en
Index UDC 534.7
DOI
Abstract The paper presents general information about a method of a two-dimensional ultrasonic tomography on the basis of measurement of amplitude characteristics in the second fabric harmonic of the transmitted wave. At visualization in an ultrasonic tomography an object is represented as a set of thin cuts of the image of the bioobject transverse sections. The image is received by data about distribution of nonlinear parameter in the biological tissue along a large number of the directions lying in the plane of this section. The algorithm of receiving projections of amplitudes of vibrational speeds of the second harmonic of the acoustic wave which transmitted through the heterogeneous biological environment is presented. On the basis of the simple wave equation which is the cornerstone of an algorithm creation of tissular harmonic formation arising due to nonlinear effects in biological tissues is described, distribution of nonlinear parameter in the biotissue is calculated. Schemes of scanning at which the radiator and the receiver are in the plane of section which image is required to be received are submitted. The main mathematical instrument of creation of the image in an ultrasonic tomography is the Radon conversion device. The research was carried out for an analytical method of topographical reconstruction in which the problem of visualization comes down to a solution of a linear equation system.

Download PDF

Keywords Nonlinear parameter; ultrasonic tomography; the second harmonica; visualization; biotissue.
References 1. Burov V.A., Zotov D.I., Rumyantseva O.D. Vosstanovlenie prostranstvennykh raspredeleniy skorosti zvuka i pogloshcheniya v fantomakh myagkikh biotkaney po eksperimental'nym dannym ul'trazvukovogo tomografirovaniy [Restoration of spatial distributions of acoustic speed and absorption in phantoms of soft biofabrics on experimental data of an ultrasonic tomografirovaniye], Akusticheskiy zhurnal [Acoustic magazine], 2015, Vol. 61, No. 2, pp. 254-273.
2. Gong X.F., Yan Y.S., Zhang D., Wang H.L. The study of acoustic nonlinearity parameter tomography in reflection mode, Acoustical Imaging, 2003, Vol. 27.
3. Bereza S.A., Burov V.A., Evtukhov S.N. Model'nye eksperimenty po akusticheskoy tomografii nelineynogo parametra [Model experiments on an acoustic tomography of nonlinear parameter], Akusticheskiy zhurnal [Acoustic magazine], 2008, Vol. 54, No. 4, pp. 522-534.
4. Varenikova A.Yu. Primenenie dinamicheskoy kharakteristiki nelineynogo vzaimodeystviya akusticheskikh voln dlya vizualizatsii biotkaney [Use of dynamic characteristics of nonlinear interaction of acoustic waves for visualization of biofabrics], Sb. materialov Dvadtsat' vtoroy Vserossiyskoy nauchnoy konferentsii studentov fizikov i molodykh uchenykh VNKSF-22 [Collection of materials of the Twenty second All-Russian scientific conference of students of physicists and young scientists of VNKSF-22]. Rostov-on-Don: Izd-vo YUFU, 2016, pp. 330-331.
5. Chernov N.N., Zagray N.P., Laguta M.V., Varenikova A.Yu. Method for determining the size of the inhomogeneity localization region based on the analysis of the secondary wave field of the second harmonic, Journal of Physics: Conference Series, 2018, 1015 (3), 032081.
6. Burov B.A., Kryukov P.V., Rumyantseva O.Zh., Shmelev A.A. Problemy ispol'zovaniya nelineynykh kollinearnykh protsessov v akusticheskoy tomografii tret'ego poryadka [Problems of use of nonlinear collinear processes in an acoustic tomography of the third order], Akusticheskiy zhurnal [Acoustic magazine], 2012, Vol. 58, No. 1, pp. 57-79.
7. Burov V.A., SHmelev A.A., Zotov D.I. Prototip tomograficheskoy sistemy, ispol'zuyushchey akusticheskie nelineynye effekty tret'ego poryadka [A prototype of the tomographic system using acoustic nonlinear effects of the third order], Akusticheskiy zhurnal [Acoustic magazine], 2013, Vol. 59, No.°1, pp. 31-51.
8. Burov V.A., Shmelev A.A.у Rumyantseva О.D. Numerical and physical modeling of tomography process based on third-order nonlinear acoustical effects, Acoustical Imaging. Eds. Andre M.P., Jones J.P., Lee H., Dordrecht, Heidelberg. London, New York: Springer Sciences Business Media B.V., 2011, Vol. 30, pp. 379-38.
9. Kim D.Y., Lee J.S., Kwon S.J., Song T.K. Ultrasound second harmonic imaging with a weighted chirp signal, IEEE Ultrasonics symposium, 2001, pp. 1477-1480.
10. Laguta M.V., Grivtsov V.V. Ispol'zovanie dinamicheskikh kharakteristik akusticheskoy volny dlya tseley vizualizatsii vnutrennikh struktur biotkaney [Use of dynamic characteristics of an acoustic wave for visualization of internal structures of biofabrics], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2017, No. 8 (193), pp. 70-77.
11. Zagray N.P. Nelineynye vzaimodeystviya v sloistykh i neodnorodnykh sredakh: monografiya [Nonlinear interactions in layered and non-uniform environments: monograph]. Taganrog: Izd-vo TRTU, 1998, 433 p.
12. Chernov N.N, Mikhralieva A.I, Zagray N.P., Al'-Saman A.Kh. Opredelenie uprugikh svoystv biologicheskikh sloistykh sred na osnove nelineynogo vzaimodeystviya akusticheskikh voln [Determination of elastic properties of biological layered environments on the basis of nonlinear interaction of acoustic waves], Inzhenernyy vestnik Dona [Engineering bulletin of Don], 2016, No. 3 Available at: ivdon.ru/ru/magazine/ archive/n3y2016/3735.
13. Fatemi M., Greenleaf J.F. Real-time assessment of the parameter of nonlinearity in tissue using «nonlinear shadowing», Ultrasound in Med. & Biol., 1996, Vol. 22, No. 9, pp. 1215-1228.
14. Gemmeke H., Ruiter N.V. 3D ultrasound computer tomography for medical imaging, Science Direct. Nuclear instruments and methods in physics research, 2007, pp. 1057-1065.
15. Zhang D., Chen X., Gong X. Acoustic nonlinearity parameter, tomography for biological tissues via parametric array from a circular piston source. Theoretical analysis and computer simulations, J. Acoust. Soc. Amer., 2001, Vol. 109, No. 3, pp. 1219-1225.
16. Tereshchenko S.A. Metody vychislitel'noy tomografii [Methods of a computing tomography]. Moscow: Fizmatlit, 2004, 320 p.
17. Khelgason S. Preobrazovanie Radona [Radon transformation]. Moscow: Mir, 1983, 150 p.
18. Khermen G. Vosstanovlenie izobrazheniy po proektsiyam: osnovy rekonstruktivnoy tomografii [Recovery of images on projections: bases of a reconstructive tomography]. Moscow: Mir, 1983, 352 p.
19. Shepp L.A., Logan B.F. The Fourier reconstruction of a head section, IEEE Trans. Nuc. Sci., 1974, Vol. 21, pp. 21-43.
20. Lavrent'ev M.M., Zerkal' S.M., Trofimov O.E. CHislennoe modelirovanie v tomografii i uslovno-korrektnye zadachi [Numerical modeling in tomographies and conditional and correct tasks]. Novosibirsk: Izd-vo IDMI NGU, 1999, 171 p.

Comments are closed.