Article

Article title DESIGN OF PRESSURE SENSOR BASED ON THE STRUCTURE OF THE SAPPHIRE-DIELECTRIC, VITREOUS-CERAMICS
Authors A. V. Sayenko, D. A. Bondarchuk
Section SECTION I. ELECTRONICS AND NANOTECHNOLOGY
Month, Year 07, 2018 @en
Index UDC 681.2
DOI 10.23683/2311-3103-2018-7-24-32
Abstract Considered the model for calculation of thermal stresses the structure of the sapphire-vitreous dielectric using the method of finite elements on the basis of the package Coventor Ware Turbo 2012. The pressure transducers for connection of sensitive element (e.g., the structures "silicon-on-sapphire") to the body (substrate holder) are used compounds or steklopack. The article considers the problem of designing constructive solutions to the pressure sensor with the use of the structure of the sapphire-dielectric glass-ceramics. The description of the basic deficiencies in the developed semiconductor pressure sensors. Scientific novelty. To improve the quality and reliability of semiconductor pressure sensors based on the structure of the sapphire-dielectric, vitreous-ceramics in conditions of high temperature, high radiation or chemically aggressive environment was developed vitreous inorganic dielectric system PbO – B2O3 – ZnO. In the calculation in the model of thermal stress of structure, the sapphire-vitreous dielectric components served as an inorganic dielectric (thickness 5 µm) and sapphire substrate manufactured by the method of horizontal directional crystallization (GNK) (thickness 0.5 µm). The fundamental difference. Used to develop pressure dielectric material meets the glassy complex physico-chemical requirements and coherence coefficients of linear thermal extensions (LTEC) with materials such as Sapphire, manufactured the method of horizontal directional solidification (SOC) and ceramics. Designed by glassy inorganic dielectric has a melting point less than 560°С, significantly to speed up manufacture and CPU time saving appliance. Thermal stress calculation model of the structure of Sapphire-glassy dielectric for pressure sensors allows to get values of thermal stresses, as well as give advice to developers to use vitreous pressure sensor dielectric as a "Binder" element of design. Submitted to the application structure of Sapphire-glassy dielectric ceramic a semiconductor design developed for the manufacture of pressure sensor based on the structure of the "Silicon-on-Sapphire". The main stages of manufacturing developed pressure sensor are: preparation of Sapphire and ceramic surface, making the sensitive element (based on Silicon-on-Sapphire "), connection of the sensitive element (structure" Silicon-on-Sapphire ") to the ceramic substrate (Hull), testing and culling. The resulting pressure sensor design using structure of Sapphire-glassy dielectric ceramics are characterized by improved operating parameters such as pressure sensor: measuring interval (from 0.1 to 120.0 Mpa) and the working temperature ( -50° С to + 250° С).

Download PDF

Keywords Pressure sensor; construction; calculation model; thermal stress; Sapphire; glassy dielectric; ceramics; the sensitive element.
References 1. Alferov Zh.I., Kop'ev P.S., Suris R.A. Nanomaterialy i nanotekhnologi [Nanomaterials and nanotechnology], Nano- i mikrosistemnaya tekhnika [Nano-and Microsystem technology], 2003, No.8, pp.3-13.
2. Wang Y.D., Wu X.H., Su Q., Li Y.-F., Zhou Z.L. Ammonia-sensing characteristics of Pt and SiO2 doped SnO2 materials, Solid-State Electronics, 2001, V. 45, pp. 347-350.
3. Dobrovinskala E.P., Litvinov L.A., Pischik V.V. Enziklopedia saphira [Encyclopedia of sapphire]. Harkov: NTK “ Institut monokristallov”, 2004, 508 p.
4. Stuchebnikov V.M. Struktury "kremniy-na-sapfire" kak material dlya tenzopreobrazovateley mekhanicheskih velichin [Silicon-on-sapphire structures as a material for strain transducers of mechanical quantities], Radiotekhnika i ehlektronika [Radio engineering and electronics], 2005, No.6, pp.678-696.
5. Ugaj Ja.A. Vvedenie v himiju poluprovodnikov [Introduction to the chemistry of semiconductors]. Moscow: Vyssh. shk., 1975, 302 р.
6. Available at: http://kulite.com.ru (accessed 17 October 2018).
7. Available at: https://honwell.ru (accessed 17 October 2018).
8. Available at: http://www.directindustry.com.ru/produkt—proizvoditel/analogovyj—datcik—davlenia—omega—91461—797.html (accessed 17 October 2018).
9. Available at: http://www.reex.ru (accessed 17 October 2018).
10. Available at: https://honwell.ru/catalog/датчики—давления (accessed 17 October 2018).
11. Nosov Ju.G., Derkachenko L.I. Posledstvie pri ispytanii korunda na mikrotverdost' [The consequence of the test of corundum for microhardness],. Zhurnal tekhniche-skoj fiziki [Technical Physics Journal], 2003, No. 10, pp. 139-142.
12. Goncharov V.A., Azanova I.V., Vasekin B.V. Model' neravnovesnoy kristallizacii dlya chislennogo resheniya zadachi rosta poluprovodnikovykh kristallov iz rasplavov [Nonequilibrium crystallization model for the numerical solution of the problem of growth of semiconductor crystals from melts], Izvestiya vuzov. Ehlektronika [Izvestiya vuzov.Elektronika], 2010, No. 5, pp. 5-13.
13. Malyukov S.P., Klunnikova Yu.V. Nano- and Piezoelectric Technologies, Materials and Devices (chapter: Physical and Technological Fundamentals of Sapphire Production for Electronics), USA: Nova Science Publishers, 2013, pp. 133-150.
14. Nelina S.N. Snizhenie kolichestva defektov v monokristallakh sapfira za schet stabilizacii gradienta temperatury teplovogo polya [Reducing the number of defects in sapphire single crystals by stabilizing the temperature gradient of the thermal field], Trudy mezhdunarodnoy nauchnoy konferencii i shkoly-seminara "Aktual'nye problemy tverdotel'noj ehlektroniki i mikroehlektroniki [Proceedings of the international scientific conference and school-seminar " Actual problems of solid-state electronics and microelectronics], 2006, pp. 82-84.
15. Koryakova Z., Bitt V. Legkoplavkie stekla s opredelennym kompleksom fiziko-mekhanicheskikh svoystv [Fusible glasses with a certain complex of physicomechanical properties], Komponenty i tekhnologii [Components and technologies], 2004, No. 5, pp. 126-128.
16. Pavluchkin N.M. Himicheskaja tehnologija stekla i sitallov [Chemical technology of glass and Sitall]. Moscow: “Strojizdatelstvo”, 1943, 432 р.
17. Lebedev G.A., Cherednichenko D.I. Issledovanie modeli zhidkofaznoy rekristallizacii sloya polikremniya na sapfirovoy podlozhke [Еhermal processes for the production of crystals of sapphire by horizontal directed crystallization], Kristallografiya [Crystallography], 2009,No. 3, pp. 553-558.
18. Klunnikova Yu.V. Optimizaciya tekhologicheskogo processa polucheniya vysokokachestvennykh podlozhek iz sapfira dlya integral;nykh skhem [Optimization of the technological process for obtaining high-quality sapphire substrates for integrated circuits], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, No. 4 (177), pp. 23-31.
19. Dobrovinskaya E.R., Lytvynov L.A., Pischik V.V. Sapphire. Material, Manufacturing, Applications. New York: Springer, 2009. 481 p.
20. Buy T.H. Razrabotka i issledovanie chuvstvitelnykh elementov datchikov davleniya na osnove struktur «kremniy na saphire» s ispolzovaniem lazernykh technologiy: dis.kand.tekhn.nauk [Development and investigation of pressure sensing elements on the basis of “silicon on sapphire” structures using laser technologies: cand. of eng sc.diss.], Taganrog, 2017, 123 p.
21. Malyukov S.P., Klunnikova Yu.V., Parinov I.A. Investigations of Defects Formation During Sapphire Growth, In: Advanced Nano- and Piezoelectric Materials and Their Applications. USA: Nova Science, 2014. P. 89-108.
22. Sinjov L.S. Raschety I vybor rejimov elektrostaticheskogo soedinenia kremniya so steklom po kriteriyu minimum ostatochnyh naprjagenij: dis.: kand. tech.nauk: 05.27.06. Moscow, 2016. 119 pp. [Sinev L.S. Calculation and selection of modes of electrostatic silicon with glass according to the criterion of minimum residual voltages: cand. of eng. sc.: 05.27.06]. M., 2016. 119 p.
23. Malyukov S.P., Nelina S.N., Stefanovich V.A. Fiziko-technologicheskie aspekty izgotovlenia izdeliy iz sapfira [Physico-technological aspects of manufacturing products from sapphire].Germanya: LAP LAMBERT Academic Publishing GmbH & Co. KG, 2012, 164 p.

Comments are closed.