Authors A. A. Nesterov, A. A. Panich, M. I. Tolstunov
Month, Year 07, 2018 @en
Index UDC 546.05
DOI 10.23683/2311-3103-2018-7-74-85
Abstract The development of modern ultrasound industry impossible without the creation of new technologies piezomaterials of various types. This is due to the fact, that the number of areas of science and technology in which piezo transducers are used increases every year. One of the ways to optimize the functional characteristics of each specific type of transducer is to use, in its manufacture, a piezomaterial with an individual optimal set of electrophysical and mechanical parameters. Traditional methods for varying these parameters consist in changing the composition of the basic ferroelectric phases, but their capabilities are close to saturation. Analysis of the problems arising in the design of ultrasonic devices are shows that some of them can be solved at the construction level. In most cases, it is more convenient and sometimes only possible, to solve them at the piezo material level: the values of the EFP and mechanical parameters (MP) of the piezoelectric transducer. Their ratio, as well as the stability of the EFP of the ultrasonic devices in relation to the operating parameters (controlling electric fields and external mechanical stresses) and the parameters of the state of the systems (temperature, pressure). The second problem of modern ultrasonic devices construction is a limited number of ferroelectric phases, on the basis of which truly effective piezomaterials can be created. This is explained by the fact that the basis of such piezomaterials are lead-containing ferroelectric phases, the traditional technologies of which are characterized by unacceptable (from the point of view of many states) environmental friendliness. This problem is associated with both the high toxicity of lead compounds and the high pressure of their vapors above the condensed phase, which grows exponentially as the temperature of the processes of synthesis of ferroelectrics phase and sintering of press preforms formed on their basis increases. In the proposed work, both new ways of solving the problems of creating ceramic piezomaterials with an optimal (for a specific type of converter) set of dielectric and piezoelectric parameters are proposed, and low-temperature technologies are considered, such as the synthesis of basic ferroelectric phases and sintering of piezoceramics. In addition to solving the environmental problems of materials of this type, the transition from traditional high-temperature technologies to technologies implemented at lower temperatures also has a significant economic effect, since it reduces energy consumption per unit of final product.

Download PDF

Keywords Ferroelectrics phase; ultrafine powders; low-temperature synthesis and sintering technologies; piezoelectric ceramics; microstructure; electrophysical properties.
References 1. Haertling G.H. Piezoelectric and Electrooptic Ceramics, Ceramic Materials for Electronics, Ed. by R. C. Buchanan. M. Dekker, New York, 1986, pp. 135-225.
2. Glozman I.A. P'ezokeramika [Piezoceramics]. Moscow: Energiya, 1972, 288 p.
3. Jaffe B., Cook W.R., Jaffe Jr., Jaffe H. Piezoelectric ceramics. Academic Press London and New York, 1971, 316 p.
4. Iona F., Shirane D. P'ezoelektricheskie kristally [Piezoelectric crystal]. Moscow: Mir, 1965, 555 p.
5. Prilipko Yu.S. Funktsional'naya keramika. Optimizatsiya tekhnologii: monografiya [Functional ceramics. Optimization of technology: monograph]. Donetsk: Nord-Press, 2007, 492 p.
6. Nesterov A.A., Panich A.A. Sovremennye problemy materialovedeniya keramicheskikh, p'ezoelektricheskikh materialov [Modern problems of materials science of ceramic, piezoelectric materials]. Rostov-on-Don: Iz-vo YuFU, 2010, 226 p.
7. Sverdlin G.M. Prikladnaya gidroakustika [Applied underwater acoustics]. Leningrad: Sudostroenie, 1990, 356 p.
8. Sharapov V.M., Musienko M.P., Sharapova E.V. P'ezoelektricheskie datchiki [Piezoelectric sensor]. Moscow: Tekhnosfera, 2006, 632 p.
9. Piezoelectric and acoustic materials for transducer applications, eds A. Safari, E.K. Akdogan. New York: Springer, 2008, 482 p.
10. Prisedskiy V.V., Volkova E.I., Mnuskina I.V., Vinogradov V.M. K opredeleniyu termodinamicheskoy aktivnosti oksida svintsa v svinetssoderzhashchikh oksidnykh fazakh [To determination of thermodynamic activity of lead oxide in lead-containing oxide phases], Naukovі pratsі Donets'kogo natsіonal'nogo tekhnіchnogo unіversitetu. Serіya: Khіmіya і khіmіchna tekhnologіya [Scientific works of Donetsk national technical University. Series: Chemistry and chemical technology], 2007, Issue 119 (9), pp. 54-61.
11. Drowart G., Colin R., Exsteen G. Mass-Spectrometric Study of the Vaporization of Lead Monoxide, Trans. Faraday Soc., 1965, Vol. 61, No. 7, pp. 1476-1381.
12. Kazenas E.K., Chizhikov D.M. Davlenie i sostav para nad okislami khimicheskikh elementov [The pressure and composition of vapor above oxides of chemical elements]. Moscow: Nauka, 1976, 342 p.
13. Muradov V.G., Kudryavtsev Yu.N., Muratova O.N., Lyubimov V.F. Izmerenie partsial'nogo davleniya atomov svintsa nad PbO metodom lineychatoy absorbtsii [Measurement of partial pressure of lead atoms over PbO by linear absorption], Prikladnaya spektroskopii [Applied spectroscopy], 1981, Vol. 34, No. 4, pp. 724-726.
14. Samsonova G.V. Fiziko-khimicheskie svoystva oksidov [Physical and chemical properties of oxides]. Moscow: Metallurgiya, 1978, 472 p.
15. Patnaik Pradyot. Handbook of inorganic chemicals. McGraw-Hill, New York, 2003б 1048 р.
16. Nesterov A.A., Panich A.E. Tekhnologiya sinteza poroshkov segnetoelektricheskikh faz [Technology of synthesis of powders of ferroelectric phases]. Rostov-on-Don. Izd-vo YuFU, 2010, 226 p.
17. Fesenko E.G. Semeystvo perovskita i segnetoelektrichestvo [The perovskite family and ferroelectricity]. Moscow.: Atomizdat. 1972, 248 p.
18. Venevtsev Yu.N., Politova E.D., Ivanov S.A. Segneto- i antisegnetoelektriki semeystva titanata bariya [Segneto- and antisegnetoelectric family of barium titanate]. Moscow: KHimiya, 1985, 256 p.
19. Prisedskiy V.V. Nestekhiometricheskiy segnetoelektriki AIIVIVO3 [.Nonstoichiometric ferroelectrics АIIВIVО3]. Donetsk: Noulidzh, 2011, 268 p.
20. Klimov V.V., Didkovskaya 0.S., Savenkova G. Е., Venevtsev Yu.N. New piezoelectric ceramics, J. Phys. Coll., 1972, C. 2, Vol. 33, pp. 243-245.
21. Klimov V. V. Didkovskaya О.S., Prisedsky V.V. Some physico-chemical aspects in development and production of piezoceramic materials, Ferroelectrics, 1982, Vol. 41, No. 14, pp. 97-109.
22. Schmalzried H. Chemical Kinetics of Solids. Weinheim: VCH, 1995, 700 p.
23. Kingeri U.D. Vvedenie v keramiku [Introduction to ceramics]. Moscow: Izd. lit. po stroitel'stvu, 1967, 500 p.
24. Surovyak Z.A. Panich A.E. Dudkevich V.P. Tonkie segnetoelektricheskie plenki [Thin ferroelectric films]. Rostov-on-Don; izd. RPU, 1994, 200 p.
25. Kovba L.M., Trunov V.K. Rentgenofazovyy analiz [X-ray phase analysis]. Moscow: Izd. MGU, 230 p.
26. Dudkevich V.P., Kuleshov V.V., Kulesheva T.B. Novyy rentgenostrukturnyy metod izmereniya vnutrennikh mekhanicheskikh napryazheniy v segnetoelektricheskikh keramikakh [New x-ray diffraction method for measuring internal mechanical stresses in ferroelectric ceramics], Sb. «P'ezoelektricheskie materialy i preobrazovateli» [Collection "Piezoelectric materials and transducers"]. Rostov-on-Don: Izd-vo RGU, 1989, pp. 9-13.
27. OST 11 0444-87. Materialy p'ezokeramicheskie. Tekhnicheskie usloviya. Gruppa E10. Vvedeny 01.01.88 [OST 11 0444-87. Piezoceramic materials. Technical conditions. Group E10. Entered 01.01.88]. Moscow, 1987, 141 p.
28. Warren B.E. X-ray Diffraction. Courier Corporation, 1990, 381 p.

Comments are closed.