Authors V. A. Obukhovets
Month, Year 07, 2018 @en
Index UDC 621.396.67
DOI 10.23683/2311-3103-2018-7-177-185
Abstract There is considered the microwave multiports synthesis problem. The scattering matrix coefficients at the prescribed frequency are the initial data for the problem. Methods of solution quality evaluating are discussed. It is shown that in order to simplify the problem solution and reduce its dimension, it is necessary to take into account the multiport physical properties. The most effective solution can be obtained for symmetric multiports. A variant of complete circular symmetry is considered in detail. For multiports that are invariant under rotation by the angle 2π / N, the procedure for determining the system of eigenvectors is the simplest one. In this case, the application of the spectral expansion of the scattering matrix makes it possible to reduce the solution to the synthesis of nondegenerate eigenvalues. For the simplest basic elements in the form of transmission lines segments, a regular method for synthesizing both the structure and the parameters of the multiport has been developed. It is shown that for a certain method of the segments lengths choosing, the calculation of the wave admittances is based on solving of a linear algebraic equations system. An example of the synthesis of a reactive multiport with six inputs is considered. Its frequency properties are investigated. The calculated results are checked experimentally on the device layout.

Download PDF

Keywords Multiport; analysis; synthesis; eigenvectors; eigenvalues; symmetry; basic elements; frequency properties.
References 1. Fel'dshteyn A.L., YAvich L.R. Sintez chetyrekhpolyusnikov i vos'mipolyusnikov na SVCH [Synthesis of four-and eight-pole microwave]. Moscow: Svyaz', 1971, 388 p.
2. Sazonov D.M., Gridin A.N., Mishustin B.A. Ustroystva SVCh: ucheb. posobie [Microwave device: a textbook], ed. by D.M. Sazonova. Moscow: Vysshaya shkola, 1981, 295 p.
3. Obukhovets V.A. Otrazhatel'nye antennye reshetki: monografiya [Reflective antenna arrays: monograph]. Rostov-on-Don: Izd-vo YuFU, 2016, 292 p.
4. Voskresenskiy D.I., Kremenetskiy S.D., Grinev A.Yu., Kotov Yu.V. Avtomatizirovannoe proektirovanie antenn i ustroystv SVCH [Automated design of antennas and microwave devices]. Moscow: Radio i svyaz', 1988.
5. Avtomatizirovannoe proektirovanie ustroystv SVCH [Computer-aided design of microwave devices], ed. by V.V. Nikol'skogo. Moscow: Radio i svyaz', 1982, 272 p.
6. Khansen R.S. Fazirovannye antennye reshetki [Phased array]. Moscow: Tekhnosfera, 2012, 560 p.
7. Antipenskiy R.V., Fadin A.G. Skhemotekhnicheskoe proektirovanie i modelirovanie radioelektronnykh ustroystv [Circuit design and modeling of electronic devices]. Moscow: Tekhnosfera, 2007, 128 p.
8. fanyaev i.a., kudin v.p. raspredelitel'naya matritsa dlya pitaniya vos'mielementnoy antennoy reshetki [Distribution matrix for power supply of eight-element antenna array], Vestnik GGTU im. P.O. Sukhogo [Sukhoi State Technical University of Gomel], 2012, No. 4, pp. 52-57.
9. Garcia-Lamperez A., Salazar-Palma M. Sarkar T.K. Analytical Synthesis of Microwave Multiport Networks, Microwave Symposium Digest, 2004, IEEE MTT-S International. Fort Worth, TX USA, USA. IEEE Xplore Digital Libary|IEEE SA|IEEE Spectrum| More Sites. DOI:10.1109/MWSYM.2004.1336009.
10. Gantmakher F.R. Teoriya matrits [Matrix theory]. Moscow: Nauka, 1988, 552 p.
11. Obukhovets V.A. Problemy konstruktivnogo sinteza otrazhatel'nykh antennykh reshetok [Problems of constructive synthesis of reflective antenna arrays], Antenny [Antennas], 1997, No. 2.
12. Yeom K.W. Microwave Circuit Design: A Practical Approach Using ADS. New York: Prentice Hall. 2015, 816 p.
13. Linear CAD Software. November 23, 2017. Available at:
14. Garcia-Lamperez A., Salazar-Palma M., Sarkar T.K. Analytical Synthesis of Microwave Multiport Networks, Microwave Symposium Digest. Fort Worth, TX, USA. 2004 IEEE MTT-S International. DOI: 10.1109/MWSYM.2004.1336009.
15. Greenwood K. Passive RF and Microwave Beamformer Networks. Available at:
16. Kim D.I., Araki K., Naito Y. Properties of the Symmetrical Five– Port Circuit and Its Broad-Band Design, IEEE Trans. MTT, 1984, Vol. 32, No. 1, pp. 51-57.
17. Fadhel M.G., Mohammadi A. The Six-Port Technique with Microwave and Wireless Applications. ARTECH HOUSE, 2009, 233 p.
18. Zhang H., Li L., Wu K. Software-Defined Six-Port Radar Technique for Precision Range Measurements, IEEE Sensor Journal, 2008, Vol. 8, No. 10, pp. 1745-1751.
19. Obukhovets V.A. Vychislenie matrits rasseyaniya SVCH mnogopolyunikov slozhnoy struktury [The calculation of the scattering matrix of microwave megapolisov complex structures], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2018, No. 3 (197), pp. 135-142.
20. Stevanovi´c I., Skrivervik A., Mosig J.R. Smart Antenna Systems for Mobile Communications. Final report. Laboratoire d’Electromagn´etisme et d’Acoustique Ecole Polytechnique F´ed´erale de Lausanne. Ch-1015 Lausanne Suisse. Available at:

Comments are closed.