Article

Article title ON ORGANIZATION OF DATA COLLECTION AND PROCESSING IN THE SYSTEM OF FORECASTING OF DANGEROUS PHENOMENA FOR THE COASTAL ZONE TO APPLY THE TECHNOLOGIES OF THE DIGITAL ECONOMY
Authors E. V. Melnik, M. V. Orda-Zhigulina, A. A. Rodina, D. V. Orda-Zhigulina, D. Ya. Ivanov
Section SECTION II. DISTRIBUTED AND CLOUD COMPUTING
Month, Year 08, 2018 @en
Index UDC 624.131:577.4
DOI 10.23683/2311-3103-2018-8-94-103
Abstract Recently “fog computing” and technology of the industrial Internet of Things are actively developing. These technologies allow linking data services, distributing the load on available resources, processing large amounts of data in the networks, which is very important for monitoring in real-time and for medical databases. The technologies link together different types of smart sensors meteorological data, hydrological and biological monitoring data, physiological parameters of people in the coastal zone, mobile devices of the coastal population and important messages of users in social networks. This paper addresses the organization of data collection and processing in the system of monitoring and forecasting hazardous phenomena and ensuring the safety of the population and coastal infrastructure based on such digital economy technologies as foggy computing, industrial Internet of things and distributed registry. It is shown that in the framework of the implementation of the “combined” method of organizing the system previously proposed by the authors, it is possible to compare primary meteorological data, hydrological and biological monitoring data, human physiological parameters and text messages, photos and video from social networks using the existing information infrastructure. A literature review and patent search were conducted, as a result of which the main types of data and sensors were identified, which are used in systems for monitoring and forecasting hazardous processes and ensuring public safety. It was suggested the method of monitoring of physiological parameters of people in the coastal zone for the monitoring system of forecasting hazardous processes. The method is proposed for monitoring the physiological parameters of people living in the coastal zone.

Download PDF

Keywords Abrasion, hydrological; meteorological; biological monitoring; data collection; processing systems; industrial Internet of things; distributed registry; digital economy; fog computing; monitoring and forecasting natural disasters and emergency situations.
References 1. Sovremennye sistemy monitoringa i prognozirovaniya chrezvychaynykh situatsiy [Modern systems of emergency situations monitoring and forecasting], under the General ed. V.A. Puchkova. Moscow: FKU TSSI GZ MCHS Rossii, 2013, 352 p.
2. Biryukova S.V., Bulysheva N.I., Savinkin A.I., Semin V.L. Donnye soobshchestva Taganrogskogo zaliva letom 2017 g. [Bottom community of the Gulf of Taganrog in the summer of 2017], Materialy nauchnykh meropriyatiy, priurochennykh k 15-letiyu YUzhnogo nauchnogo tsentra Rossiyskoy akademii nauk: Mezhdunarodnogo nauchnogo foruma "Dostizheniya akademicheskoy nauki na yuge Rossii"; Mezhdunarodnoy molodezhnoy nauchnoy konferentsii "Okeanologiya v 21 veke: sovremennye fakty, modeli, metody i sredstva" pamyati chlena-korrespondenta ran D.G. Matishova; Vserossiyskoy nauchnoy konferentsii «Akvakul'tura: mirovoy opyt i Rossiyskie razrabotki» [Materials of scientific events dedicated to the 15th anniversary of the southern scientific center of the Russian Academy of Sciences: International scientific forum "Achievements of academic science in the South of Russia"; international youth scientific conference "Oceanology in the 21st century: modern facts, models, methods and tools" in memory of corresponding member of RAS D.G. Matishov; all-Russian scientific conference "Aquaculture: world experience and Russian developments"].. Rostov-on-Don: Yuzhnyy nauchnyy tsentr RAN, 2017, pp. 299-301.
3. Mel'nik E.V., Ivanov D.Ya., Rodina A.A., Orda-Zhigulina D.V. Kombinirovannyy podkhod k postroeniyu sredstv monitoringa i prognozirovaniya opasnykh protsessov [Combined approach to the construction of monitoring and forecasting of hazardous processes], Izvestiya TulGU. Tekhnicheskie nauki [Izvestiya Tula State University], 2018, No. 9, pp. 97-107.
4. Application 20180011973, USA, An integrated mobile personal electronic device and a system to securely store, measure and manage users health data, applicant Fish, Gila (Mevasseret Zion, IL), patentee OS - NEW HORIZONS PERSONAL COMPUTING SOLUTIONS LTD. (Lod, IL), published 11.01.2018. Available at: http://www.freepatentsonline.com/ y2018/0011973.html (accessed 22 October 2018).
5. Patent CN203275358, China, Mobile-phone system for testing blood sugar, applicant Ding Zhiguo, patentee TIANJIN SHIDAI YINUO SCIENCE & TECHNOLOGY CO LTD, published 06.11.2013. Available at: https://worldwide.espacenet.com/publication Details/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20131106&CC=CN&NR=203275358U&KC=U# (accessed 22. October 2018).
6. Patent 9460596, USA, Portable wireless remote monitoring and control systems, applicant and patentee Thomas Lawrence (Greenville, SC), US, published 04.10.2016. Available at: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=4&p=1&f=G&l=50&d=PTXT&S1=9460596&OS=9460596&RS=9460596 (accessed 22 October 2018).
7. Patent 9014983, США, Platform, systems, and methods for obtaining shore and near shore environmental data via crowdsourced sensor network, applicant Michael G. (Solana Beach, CA), patentee Blue Tribe, Inc (Solana Beach, CA, US), published 21.04.2015. Available at: http://patftuspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2 FPTO%2Fsearch-adv.htm&r=5&p=1&f=G&l=50&d=PTXT&S1=9014983&OS=9014983& RS=9014983 (accessed 22 October 2018).
8. Matishov G.G., CHikin A.L., Berdnikov S.V., Sheverdyaev I.V., Kleshchenkov A.V., Kirillova E.E. Ekstremal'noe zatoplenie del'ty Dona vesnoy 2013 g: khronologiya, usloviya formirovaniya i posledstviya [Extreme flooding of the don Delta in the spring of 2013: chronology, conditions of formation and implications], Vestnik Yuzhnogo nauchnogo tsentra RAN [Bulletin of the southern scientific center RAS], 2014, Vol. 10, No. 1, pp. 17-24.
9. Namiot D.E., Pokusaev O.N., Kupriyanovskiy V.P., Akimov A.V. Prilozheniya blokcheyn na transporte [Applications blockchain transport], International Journal of Open Information Technologies, 2017, Vol. 5, No. 12, pp. 130-134.
10. Kalyaev I.A., Mel'nik E.V. Metod mul'tiagentnogo raspredeleniya resursov v intellektual'nykh mnogoprotsessornykh vychislitel'nykh sistemakh [Method of multi-agent resource allocation in intelligent multiprocessor computing systems], Vestnik YuNTS RAN [Bulletin of southern scientific center of RAS], 2007, No. 12, pp. 40-50.
11. Salamatov I.A. Lokalizatsiya dannykh za schet ispol'zovaniya oblachno-tumannykh tekhnologiy [Data localization through the use of cloud-foggy technologies], Vestnik Volzhskogo universiteta im. V.N. Tatishcheva [Bulletin of the Volga region University. V.N. Tatishcheva], 2015, No. 1 (23). Available at: https://cyberleninka.ru/article/n/lokalizatsiya-dannyh-za-schet-ispolzovaniya-oblachno-tumannyh-tehnologiy (accessed 05 October 2018).
12. Kalyaev I.A., Mel'nik E.V. Detsentralizovannye sistemy komp'yuternogo upravleniya: monografiya [Decentralized computer control systems: monograph]. Rostov-on-Don: Izd-vo YuNTS RAN, 2011, 196 p.
13. Kalyaev A.I., Kalyaev I.A. Metod detsentralizovannogo upravleniya raspredelennoy sistemoy pri vypolnenii potoka zadaniy [The method of decentralized control of a distributed system in the flow of task], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, automation, control], 2015, No. 9, Vol. 16, pp. 585-598.
14. YiS. etal. Fog computing: Platform and applications, Proc. 3rd Work. Hot Top. Web Syst. Technol. HotWeb 2015, 2016, pp. 73-78.
15. Stojmenovic S. Wen. The Fog Computing Paradigm: Scenarios and Security Issues, Proc. 2014 Fed. Conf. Comput. Sci. Inf. Syst., 2014, Vol. 2, pp. 1-8.
16. Hosseinpour F., Westerlund T., Meng Y. A Review on Fog Computing Systems, Int. J. Adv. Comput. Technol. HannuTenhunen, 2016, Vol. 8 (5), pp. 48-61.
17. Tekhnologii raspredelennogo reestra dannykh. Walport [Technologies of the distributed registry data. Walport]. Moscow, 2015.
18. Kuo T.T., Kim H.E.. Distributed ledger technology: Beyond block chain. Government Office for Science, Ohno-Machado, L., 2017, pp. 1-88.
19. Wu H., Li Z., King B., Miled Z., Wassick J.Blockchain distributed ledger technologies for biomedical and health care applications, Journal of the American Medical Informatics Association, Tazelaar, J., 2017.
20. Bonomi F. et al. Fog Computing and Its Role in the Internet of Thing, Proc. first Ed. MCC Work. Mob. Cloud Comput., 2012, pp. 13-16.
21. Atzori L., Iera A., Morabito G. The internet of things: A survey, Comput. networks. Elsevier., 2010, Vol. 54, No. 15, pp. 2787-2805.
22. Kalyaev I.A., Gayduk A.R., Kapustyan S.G. Samoorganizatsiya v mul'tiagentnykh sistemakh [Self-organization in multi-agent systems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 3 (104), pp. 14-20.

Comments are closed.