Article

Article title DEVELOPMENT OF ADAPTIVE EVOLUTIONARY ALGORITHM OPTIMIZATION BASED ON FUZZY LOGIC
Authors D.A. Beloglazov, I.S. Kobersi, V.I. Finaev
Section SECTION IV. MATHEMATICAL MODELING AND DATA PROCESSING
Month, Year 04, 2013 @en
Index UDC 62-551
DOI
Abstract In this work the design features of genetic algorithms applied to solve a variety of optimization problems. You are a full analysis of the main phase of the genetic algorithm, we define a method of selection decisions in a new population, the shape and parameters of the operators accidental changes. Designed fuzzy controller of changing dynamically the likelihood of mutation operators, crossover, improve genetic diversity generated solutions, the process of convergence of the algorithm. The results of experimental studies effectiveness of the proposed genetic algorithm for solving the optimization of functions of several variables, training of neural networks.

Download PDF

Keywords Genetic algorithms; multiparametric optimization; fuzzy logic; artificial intelligence.
References 1. Белоглазов Д.А. Разработка и исследование методов синтеза адаптивных регуляторов на основе нейро-нечетких сетевых структур: Дис. … канд. техн. наук. – Таганрог: ТТИ ЮФУ, 2012.
2. Финаев В.И., Мажди Наср Аллах. Адаптивные автоматные системы управления: Монография. – Таганрог: Изд-во ТТИ ЮФУ, 2007.
3. Гладков Л.А., Курейчик В.В., Курейчик В.М. Генетические алгоритмы / Под. ред.
В.М. Курейчика. – М.: Физматлит, 2006. – 320 с.
4. Lei Wang, Dun-bing Tang. An improved adaptive genetic algorithm based on hormone modulation mechanism for job-shop scheduling problem//Expert Systems with Applications. – 2011. – Vol. 38, № 6. – Р. 7243-7250.

Comments are closed.