Article

Article title SYSTEM ASPECTS OF OPTIMIZATION OF FUNCTIONING OF TERRITORIALLY DISTRIBUTED POWER SYSTEMS
Authors E.N. Pavlenko
Section SECTION IV. METHODS OF THE ARTIFICIAL INTELLECT
Month, Year 02, 2013 @en
Index UDC 519.816
DOI
Abstract We consider a formalization and construction principles of the automatic optimization with application expertise. Systems can proyaslyat property self-organization by adapting to the changing parameters of the control object. Since the task of ensuring immunity and performance in conflict, you need a heuristic selection of the right for the situation of the search algorithm of the set of feasible algorithms. This explains the usefulness of search strategies with adaptive methods of choosing the parameters of SAO, and the use of assessment tools, and process control solutions operate in accordance with generally accepted criteria, which, in turn, provides an adaptive and optimal (suboptimal) behavior SAO.

Download PDF

Keywords System; adaptation; artificial intelligence; self-organization; learning.
References 1. Справочник по теории автоматического управления / Под ред. А.А. Красовского. – М.: Наука, 1987. – 712 с.
2. Финаев В.И., Мажди Наср Аллах. Адаптивные автоматные системы управления/Монография. – Таганрог: Изд-во ТТИ ЮФУ, 2007. – 151 с.
3. Срагович В.Г. Теория адаптивных систем. – М.: Наука, 1976. – 320с.
4. Растригин Л.А. Адаптация сложных систем. – Рига: Зинатне, 1981.
5. Алиев Р.А., Церковный А.Э., Мамедова Г.А. Управление производством при нечеткой исходной информации. – М.: Энергоатомиздат, 1991. – 240 с.
6. Mandani E.H. A fuzzy rule-based method of controlling dynamic processes. Queen Mary College. London, 1981.
7. Finaev V.I., Glod O.D. Conceptual Model of an Adaptive Trained Control System by Beforehand Uncertain Situational Objects. Third European Congress on Intelligent Techniques and Soft Computing. Aachen, Germany, 1995.

Comments are closed.