Article

Article title ESPECIALLY SOFTWARE-HARDWARE IMPLEMENTATION OF METHODS AUTOMATICALLY EVALUATION OF COMPOUND DISPERSION NOISE ON HYPERSPECTRAL IMAGES
Authors V.V. Lukin, S.K. Abramov, V.V. Abramova, A.I. Sherstobitov, V.P. Fedosov
Section SECTION III. MICROELECTRONICS, SIGNAL PROCESSING
Month, Year 01, 2013 @en
Index UDC 004.932.2
DOI
Abstract The article describes the features of the software and hardware implementations of automatic dispersion mixture of signal-independent and signal-dependent noise on the multi-and hyperspectral imaging systems for remote sensing. The method is based on the estimation of the parameters of the regression line, inscribed on the centers of clusters scatterogram local estimates of the variance and the mean. To find the cluster centers used a method based on an analysis of the statistical characteristics of DCT coefficients of the image. Noise variance estimates obtained in the future may be used to optimize image compression. The method is intended for use directly on-board signal processor support and implemented taking into account the maximum parallelization and pipelining principles. The method and corresponding software and hardware can be used for other applications, provided that the noise spatially uncorrelated and there is a reasonable a priori information about the model noise, allowing you to select the type and order of the polynomial regression.

Download PDF

Keywords Remote sensing; multi-channel system; the complex interference; automatic evaluation of noise variance.
References 1. URL: http://aviris.jpl.nasa.gov (дата обращения: 24.10.2012).
2. Van Zyl Marais I., Steyn W.H. Robust defocus blur identification in the context of blind image quality assessment // Journal of Image Communication. – Vol. 22. – 2007. – P. 833-844.
3. Ponomarenko N.N., Lukin V.V., Ieremeyev O.I., Egiazarian K.O., Astola J.T. Sharpness metric for no-reference image visual quality assessment // Proceedings SPIE Conference Image Processing: Algorithms and Systems VIII, San Jose, USA. – 2012. – Vol. 8295. – P. 12-18.
4. Ponomarenko N., Zriakhov M., Lukin V., Kaarna A. Improved Grouping and Noise Cancellation for Automatic Lossy Сompression of AVIRIS Images // Proceedings of ACIVS, Springer,
Heidelberg. LNCS-6475 (Part II). – 2010. – P. 261-271.
5. Kurkin D., Lukin V., Abramova V., Abramov S., Vozel B., Chehdi K. Image DCT-coefficient statistics and their use in blind noise variance estimation // Proceedings of MMET, Kharkov, Ukraine. – 2012. – P. 316-319.
6. Uss M.L., Vozel B., Lukin V., Chehdi K. Maximum Likelihood Estimation of Spatially Correlated Signal-Dependent Noise in Hyperspectral Images // Optical Engineering. – 2012. – P. 125-132.
7. Марчук В.И., Воронин В.В., Шерстобитов А.И. и др. Методы цифровой обработки сигналов для решения прикладных задач: Монография под ред. В.И. Марчука. – М.: Изд-во «Радиотехника», 2012. – 128 с.
8. Марчук В.И., Воронин В.В., Франц В.А. Разработка адаптивного двумерного метода размножения оценок при восстановлении изображений в условиях неполной априорной информации // Телекоммуникации. – 2011. – № 9. – С. 33-37.

Comments are closed.