Article

Article title CLOSE OPERATING METHODS OF ANALYSIS OF THE LINEAR DYNAMIC SYSTEMS WITH IN-OUT PARAMETERS
Authors А.А. Sytnik, S.Yu. Protasov, K.N. Klyuchka
Section SECTION IV. INTELLECTUAL SYSTEMS, AUTOMATICS AND CONTROL
Month, Year 01, 2013 @en
Index UDC 681. 51
DOI
Abstract In the article the questions of application of operating methods are considerexamined for the analysis of the linear dynamic systems with in-out parameters. In the majority they behave to the class of the so called systems with slowly changing parameters at which the coefficients of differential equalization unimportant change the meaning in times of effective duration of impulsive transitional function. This class of tasks also testifies to importance of elaboration analytical and numerical of effective methods of decision, especially by means of receipt of such exhaustive description of the system, as an impulsive transitional function. It is offered operating methods enable receipt of analytical presentation of decision of differential equalizations and systems with variable coefficients, and also am one of variants of receipt of impulsive transitional function.

Download PDF

Keywords Differential equalization; integral equalization Vol'terra; impulsive transitional function; transformation of Laplasa.
References 1. Солодов А.В., Петров Ф.С. Линейные автоматические системы с переменными параметрами. – М.: Наука, 1971. – 620 с.
2. Шевелёв А.Г. Основы линейной теории нестационарных систем автоматического управления. Мин. образ. и науки Украины НАУ. – Киев: Изд-во НАУ, 2004. – 265 с.
3. Пухов Г.Е. Дифференциальные преобразования и математическое моделирование физических процессов. – Киев: Наукова думка, 1986. – 160 с.
4. Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. – М.: Физматгиз, 1961. – 524 с.
5. Попов Е.П. Теория нелинейных систем автоматического регулирования и управления: Учеб. пособие. – 2-е изд., стер. – М.: Наука. Гл. ред. физ.-мат. лит., 1988. – 256 с.
6. Кафтанова Ю.В. Специальные функции математической физики. Научно-популярное издание. – Харьков: ЧП Изд-во «Новое слово», 2009. – 596 с.

Comments are closed.