Authors A.A. Paletsky, M.B. Gonchikzhapov, I.K. Shundrina, O.P. Korobeinichev
Month, Year 08, 2013 @en
Index UDC 541.124
Abstract The methods of probe molecular-beam mass spectrometry, dynamic mass-spectrometric thermal analysis, thermal gravimetry, microtheromocouples, chromato/mass spectrometry and video recording were used to investigate the effect of triphenylphosphate on the process of combustion and thermal decomposition of polyethylene specimens with different molecular weight. It has been shown that addition of TPP to polyethylene affects the ignition delay time, the burning rate, the rate of thermal decomposition, the surface temperature during combustion, and the composition of the pyrolysis products. TPP is an effective flame retardant, effectively acting both in the gas and condensed phase (K-phase). The mechanism of the action of the flame retardant in the gas phase of flame is related to the of the chain terminations as a result of radical recombination reactions (primarily with ОН radicals) with the TPP decomposition products. The mechanism of TPP action in the K-phase may be related to the fact the flame retardant reacts with radicals, thus interfering with the reaction of radical transfer in the radical decomposition process of polyethylene chain rupture. The effectiveness of reducing the combustibility of polyethylene specimens by TPP additives increases, as its molecular weight decreases. To model the polymer combustion processes, it is reasonable to use the kinetic parameters obtained under conditions of high heating rates.

Download PDF

Keywords Polyethylene; combustion; ignition; inhibition; flame retardants; combustibility; triphenylphosphate.
References 1. Levchik S.V. New developments and trends in phosphorus flame retardants” 2nd International Symposium on Flame Retardant Materials & Technologies (ISFRMT 2012) September 17-20, 2012, Chengdu, China.
2. Shmakov A.G., Shvartsberg V.M., Korobeinichev O.P. Beach M.W., Hu T.I. and Morgan T.A. Structure of a freely propagating rich CH4/air flame containing triphenylphosphine oxide and
hexabromocyclododecane // Comb. Flame. – 2007. – Vol. 149m № 4. – P. 384-391.
3. Beach M.W., Morgan T.A., Hu T.I., Vozar S.E., Filipi S.Z., Sick V., Shmakov, A.G., Shvartsberg V.M., Korobeinichev O.P. Screening approaches for gas phase activity of flame retardants // Proc. Comb. Inst. – 2009. – Vol. 32. – P. 2625-2632.
4. Beach M.W., Rondan N.G., Froese R.D., Gerhart B.B., Green J.G., Stobby B.G., Shmakov A.G., Shvartsberg V.M. and Korobeinichev O.P. Studies of degradation enhancement of poly-
styrene by flame retardant additives // Polymer Degrad. Stab. – 2008. – Vol. 93, № 9. – P. 1664-1673.
5. Шмаков А.Г., Шварцберг В.М., Коробейничев О.П., Бич М.В., Хью Т.И., Морган Т.А. Влияние добавок трифенилфосфиноксида, гексабромциклододекана и бромистого этила на CH4/O2/N2 пламя при атмосферном давлении // Физика горения и взрыва. – 2007. – Т. 43, № 5. – С.12-20.
6. Jang B. N., Wilkie Ch. A. The effects of triphenylphosphate and recorcinolbis on the thermal degradation of polycarbonate in air // Thermochimica Acta. – 2005. – Vol. 433. – P. 1-12.
7. Jian Shi, Bo Jing, Xiaxuan Zou, Hongjun Luo, Wenli Dai. Investigation on thermostabilization effect and nonisothermal degradation kinetics of the new compound additives on
polyoxymethylene // J. Mater. Science. – 2009. – Vol. 44. – P. 1251-1257.
8. Junfeng Xiao Fire retardant synergism between melamine and triphenyl phosphate in poly (butylene terephthalate) // Polymer Degrad. Stab. – 2006. – Vol. 91. – P. 2093-2100.
9. Thirumal M., Singha K., Khastgir D. Halogen-Free Flame-Retardant Rigid Polyurethane Foams: Effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams // J. Appl. Polymer Science. – 2010. – Vol. 116. – P. 2260-2268.
10. Xiao W., He P., Hu G., He B. Study on the Flame-retardance and Thermal Stability of the Acid Anhydride-cured Epoxy Resin Flame-retarded by Triphenyl Phosphate and Hydrated Alumina // J. Fire Sciences. – 2001. – Vol. 19. – P. 369-377.
11. Nakashima E., Ueno T., Yukumoto M., Takeda K. Effect of Molecular Weight of Polyethylene on Its Flammability // Journal of Applied Polymer Science. – 2011. – Vol. 122. – P. 436-443.
12. Rudnik E. and Dobkowski Z. Thermal degradation of uhmwpe // Journal of Thermal Analysis. – 1997. – Vol. 49. – P. 471-475.
13. Korobeinichev O.P., Paletsky A.A., Kuibida L.V., Gonchikzhapov M.B., Shundrina I.K. Reduction of flammability of ultrahigh-molecular-weight polyethylene by using triphenyl phosphate
additives // Proceedings of the Combustion Institute. – 2013. – Vol. 34. – P. 2699-2706.
14. Гончикжапов М.Б., Палецкий А.А., Коробейничев О.П. Исследование процесса термического разложения и горения сверхвысокомолекулярного полиэтилена с добавлением
трифенилфосфата // Вестник НГУ, серия: Физика. – 2011. – Т. 6, № 4. – С. 123-132.
15. Гончикжапов М.Б., Палецкий А.А., Куйбида Л.В., Шундрина И.К., Коробейничев О.П. Снижение горючести сверхвысокомолекулярного полиэтилена добавками трифенилфосфата // Физика горения и взрыва. – 2012. – Т. 48, № 5. – С. 97-109.
16. Font R., Aracil I., Fullana A., Conesa J.A. Semivolatile and volatile compounds in combustion of polyethylene // Chemosphere. – 2004. – Vol. 57. – P. 615-627.
17. Kawaguchi O., Ohtani T., Kojima H. Thermal decomposition process of a polyethylene pellet in a hot stagnation flow // Comb. Sc. Tech. – 1997. – Vol. 130. – P. 411-421.
18. Ueno T., Nakashima E., Takeda K. Quantitative analysis of random scission and chain-end scission in the thermal degradation of polyethylene // Polymer Degrad. Stab. – 2010. – Vol. 95. – P. 1862-1869.

Comments are closed.