Article

Article title SEARCH INSPIRED BY NATURAL SYSTEMS, FOR THE DESIGN AND MANAGEMENT
Authors V.V. Kureichik, Vl.Vl. Kureichik
Section SECTION V. EVOLUTIONARY MODELLING, GENETIC AND BIONIC ALGORITHMS
Month, Year 11, 2012 @en
Index UDC 321.3
DOI
Abstract This paper describes the design of search-based methods, inspired by natural systems. We describe an evolutionary, genetic, ant and bee algorithms. Proposed new and modified search architecture, inspired by natural systems that use multi-level evolution. This allows you to parallelize the process of solving the problem and partially eliminate the pre-convergence algorithms. The principal difference between the proposed methods is to divide the search process into two stages and the use of each of these stages, different algorithms. Conducted a series of tests and experiments provide a more accurate theoretical estimates of the time complexity of the design of algorithms and their behavior patterns to different structure. In the best case time complexity of algorithms ˜ O (nlogn), in the worst case – O (n3).

Download PDF

Keywords Hybrid search; schematic design; management; algorithm; inspired by natural systems; genetic algorithm; ant algorithm; bee algorithm.
References 1. Курейчик В.В., Курейчик В.М., Гладков Л.А., Сороколетов П.В. Бионспирированные методы в оптимизации. – М.: Физмалит, 2009.
2. Курейчик В.В., Курейчик В.М., Родзин С.И. Концепция эволюционных вычислений, инспирированных природными системами // Известия ЮФУ. Технические науки. – 2009. – № 4 (93). – С. 16-27.
3. Гладков Л.А, Курейчик В.В., Курейчик В.М. Генетические алгоритмы. – М.: Физматлит, 2010.
4. Курейчик В.М., Кныш Д.С. Проблемы, обзор и параллельные генетические алгоритмы: состояние // Известия РАН. Теория и системы управления. – 2010. – № 4. – С. 72-82.
5. Abraham A., Grosan G., Ramos V. Swarm Intelligence in Data Mining. – Berlin - Heidelberg: Springer Verlag, 2006.
6. Курейчик В.М., Лебедев Б.К., Лебедев О.Б. Разбиение на основе моделирования адаптивного поведения биологических систем // Нейрокомпьютеры. Разработка применение. – 2010. – № 2. – С. 28-33.
7. Dorigo M., Maniezzo V., Colorni A. The Ant System: Optimization by a colony of cooperating objects // IEEE Trans. on Systems, Man, and Cybernetics. – 1996. – Part B. – № 26 (1). – P. 29-41.
8. Karaboga D. An idea based on honey bee swarm for numerical optimization // Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
9. Курейчик В.В., Запорожец Д.Ю. Роевой алгоритм в задачах оптимизации // Известия ЮФУ. Технические науки. – 2010. – № 7 (108). – С. 28-32.

Comments are closed.