Article

Article title NUMERICAL SIMULATION OF THE SURGE OF NONLINEAR SURFACE GRAVITY WAVES ON FLAT COASTAL SLOPES
Authors I.B. Abbasov, I.S. Semenov, V.V. Tsarevskyi
Section SECTION I. MATHEMATICAL MODELLING OF AERO- AND HYDRODYNAMIC PROBLEMS
Month, Year 06, 2012 @en
Index UDC 551.466
DOI
Abstract This article considers two-dimensional numerical simulation of the surge of nonlinear surface gravity waves on the basis of Navier–Stokes equations. The statement of the problem is formulated and its boundary and initial conditions are described. A discrete model is constructed using the method of splitting with respect to physical processes. A discrete finite-element model of this problem is developed taking into account the cell fill factor. The conservativeness of the discrete model was investigated and the approximation error of the finite-difference scheme is found. The results of a two-dimensional numerical simulation of the surge of nonlinear surface gravity waves on extensive coastal slopes of shallow-water offshore areas are presented.

Download PDF

Keywords Numerical simulation; Navier–Stokes equation; splitting method; flat coastal slope; surge of nonlinear surface gravity waves.
References 1. Железняк М.К., Пелиновский Е.Н. Физико-математические модели наката цунами на берег //«Накат цунами на берег»: Сб. науч. тр. – Горький, 1985. – С. 8-34.
2. Шокин Ю.И., Чубаров Л.Б., Марчук Ан.Г., Симонов К.В. Вычислительный эксперимент в проблеме цунами. – Новосибирск: Наука. Сиб. отделение, 1989. – 168 с.
3. Kawasaki K. Numerical simulation of breaking and post-breaking wave deformation process around a submerged breakwater // Coastal Engineering Journal. – 1999. – Vol. 41, № 3&4. – P. 201-223.
4. Zhao Q., Armfield S., Tanimoto K. Numerical simulation of breaking waves by a multi-scale turbulence model //Coastal Engineering. – 2004. – Vol. 51. – P. 53-80.
5. Аббасов И.Б., Неверов А.А. Численное моделирование рефракции нелинейных поверхностных гравитационных волн на основе уравнения мелкой воды // Известия ЮФУ.
Технические науки. – 2011. – № 8 (121). – С. 147-153.
6. Аббасов И.Б. Моделирование нелинейных волновых явлений на поверхности мелководья. – М.: Физматлит, 2010. – 128 с.
7. Флетчер К. Вычислительные методы в динамике жидкостей: В 2 т. – Т. 2. – М.: Мир, 1991. – 552 с.
8. Harlow F. H. Welch J. E. Numerical calculation of time-dependent viscouse incompressible flow of fluid with free surface // Phys. Fluids. – 1965. – Vol. 8, № 12. – P. 2182-2189.
9. Сухинов А.И., Тимофеева Е.Ф., Чистяков А.Е. Построение и исследование дискретной математической модели расчета прибрежных волновых процессов // Известия ЮФУ.
Технические науки. – 2011. –№ 8 (121). – С. 22-32.

Comments are closed.