Article

Article title DISCONTINIUOS GALERKIN NUMERICAL SCHEME FOR MASS TRANSFER PROCESS WITH POINT SOURCE
Authors N.B. Itkina
Section SECTION I. MATHEMATICAL MODELLING OF AERO- AND HYDRODYNAMIC PROBLEMS
Month, Year 06, 2012 @en
Index UDC 519.6
DOI
Abstract Variational formulations for convection-diffusion equations based on discontinuous Galerkin (DG-method) approximation method is offered. Application of the discontinuous Galerkin method for the convection-diffusion problems solution substantiated properties of local conservatives of DG-method, as well as its potential for use h and ph-strategies. These character- istics of the method can avoid unphysical oscillations near the boundary and internal layers. The paper investigates the use of different orders bases, which allows to develop a strategy for constructing adaptive grid. Was shown on the class of model problems that the use of lifting operator significantly increased the stability of the computational scheme.

Download PDF

Keywords Discontinuous Galerkin method; convection-diffusion-reaction problems; operator of stabilization.
References 1. Arnold D.N., Brezzi F., Cocburn B., Marini D. Unified analysis of discontinuous Galerkin methods for elliptic problems // SIAM J. Numer. Anal. – 2002. – Vol. .39, № 5. – P. 1749-1779.
2. Cocburn B. Discontinuous Galerkin methods for convection-dominated problems // In High – Order Methods for Computational Physics. – 1999. Vol. 9. – P. 69-224.
3. Baumann C.E.and Oden J.T. A discontinuous hp finite element method for convectiondiffusion problems // Comput. Methods Appl. Mech. Eng. – 1999. – № 175. – P. 311-341.

Comments are closed.