Article

Article title NOISE STABILITY OF THE ALGORITHMS AIMED AT DOPPLER SIGNAL REPRESENTATION IN TERMS OF THE COMPONENTS WITH HARMONIC FREQUENCY MODULATION
Authors E.O. Evdokimova, V.P. Fedosov
Section SECTION I. METHODS IMAGE AND SIGNAL PROCESSING
Month, Year 11, 2013 @en
Index UDC 621.382.323.001.57
DOI
Abstract The noise stability of the Doppler signature decomposition algorithms intended for moving objects detection and recognition is investigated. The algorithms are aimed at Doppler spectrum analysis based on dictionaries composed of signal-like components describing micro-motions. Resolution ability of the dictionaries is explored. A basis of algorithms are dictionaries special similar to signal basic functions on which basis formation of differences of signatures of object is provided. In the paper noise stability of the algorithms designed for classification of such objects, as helicopters and other aircrafts and vehicles, walking human or animal. Also, such an algorithms can be used for personal recognition based on human gait deference, or classification civil-terrorist for security applications. Components extraction allows particular analysis and detail investigating of micro-Doppler signal features, associated with certain micro-motions. It is shown, that dictionaries provide a high noise stability and resolution even at the low relation a signal/noise (SNR).

Download PDF

Keywords Doppler signature; decomposition; noise stability.
References 1. Bilik I., Tabrikian J., Cohen A. GMM-based target classification for ground surveillance Doppler radar // Aerospace and Electronic Systems, IEEE Transactions on. – 2006. – № 42 (1). – P. 267-278.
2. Otero M. Application of a continuous wave radar for human gait recognition. In Defense and Security // International Society for Optics and Photonics. – 2005. – P. 538-548.
3. Chen. V.C. The micro-Doppler effect in radar. – Artech House Publishers, 2011. – 290 p.
4. Chen V.C., Li F., Ho S.S., Wechsler H. Micro-Doppler effect in radar: phenomenon, model, and simulation study // Aerospace and Electronic Systems, IEEE Transactions on. – 2006. – № 42 (1). – P. 2-21.
5. Tahmoush D., Silvious J. Modeled gait variations in human micro-Doppler // In Radar Symposium (IRS). – 2010. – 11th International IEEE. – Р. 1-4.
6. Boashash B. Time frequency analysis. Access Online via Elsevier. – 2003. – 81 p.
7. Chen V.C. Analysis of radar micro-Doppler with time-frequency transform. In Statistical Signal and Array Processing // Proceedings of the Tenth IEEE Workshop on. – 2000. – P. 463-466.
8. Mallat S.G., Zhang Z. Matching pursuits with time-frequency dictionaries // Signal Processing, IEEE Transactions on. – 1993. – № 41(12). – P. 3397-3415.
9. Sejdić E., Djurović I., & Jiang J. Time–frequency feature representation using energy concentration: An overview of recent advances // Digital Signal Processing. – 2009. – № 19 (1). – P. 53-183.
10. Thayaparan T., Abrol S., Riseborough E. ect. Analysis of radar micro-Doppler signatures from experimental helicopter and human data // IET Radar, Sonar & Navigation. – 2007. – № 1 (4). – P. 289-299.
11. Fogle O.R., Rigling B.D. Micro-Range/Micro-Doppler Decomposition of Human Radar Signatures // Aerospace and Electronic Systems, IEEE Transactions on. – 2012. – № 48 (4).
– P. 3058-3072.
12. Raj R.G., Chen V.C., Lipps R. Analysis of radar human gait signatures // Signal Processing, IET. – 2010. – № 4 (3). – P. 234-244.
13. Raj R. G., Chen V.C., Lipps R. Analysis of radar dismount signatures via non-parametric and parametric methods // In Radar Conference, IEEE. – 2009, May. – P. 1-6.
14. Cai C., Liu W., Fu J.S. Empirical mode decomposition of micro-Doppler signature // In Radar Conference, IEEE International. – 2005, May. – P. 895-899.
15. Евдокимова Е.О., Федосов В.П. Анализ алгоритмов декомпозиции многокомпонентных доплеровских сигналов для определения параметров движения объектов // Труды
Международной научной конференции «Излучение и рассеяние ЭМВ – ИРЭМВ-2-13». – Таганрог: Изд-во ЮФУ. – 2013. – С. 679-684.
16. Евдокимова Е.О. Модель сигнала для оценки параметров подвижных объектов на основе анализа доплеровского спектра // Известия ЮФУ. Технические науки. – 2013. – № 5 (142). – С. 122-128.
17. Ильин В.А., Позняк Э.Г. Линейная алгебра. – М.: Наука, 1974. – 296 с.

Comments are closed.