Authors A.I. Panychev, I.V. Dubinskaya
Month, Year 11, 2013 @en
Index UDC 621.396.98
Abstract Refraction of electromagnetic waves plays a significant role in ensuring the wireless inside the building without direct visibility. The modeling of rays passage through the building walls is carried out with the purpose of the analysis of WLAN signals intensity in premises adjacent to the place of the access point location. The refraction of rays is considered in the approximation of geometrical optics. The algorithms for constructing the trajectory calculation of the intensity of the beam multiple refraction in the case of a predefined position access points and client network connection are designed. The procedure for constructing three-dimensional route is based on the calculation of the ray intersection points coordinates with each of the refractive surfaces, for which solved by a system of nonlinear algebraic equations. Presents some results, illustrating the efficiency of proposed algorithms in problems of estimating the share of the field, passing from adjacent premises in the global interference pattern of the WLAN signals intensity distribution.

Download PDF

Keywords WLAN; geometrical optics method; rays refraction; algorithm; rays tracing.
References 1. Банков С.Е., Курушин А.А. Расчет и моделирование распространения радиоволн в городской среде и пересеченной местности с помощью программы Wireless InSite // EDA Express. – 2004. – №. 9. – С. 35-39.
2. Madej P. 3D Wireless Networks Simulator – Visualization of Radio Frequency Propagation for WLANs // Dissertation. Univ. of Dublin, Trinity College, 2006.
3. Torres R.P. a.o. CINDOOR: An Engineering Tool for Planning and Design of Wireless System in Enclosed Spaces // Antennas and Propagation Magazine. – 1999. – Vol. 41, № 4. – P. 11-21.
4. Dimitriou A.G., Bletsas A., Bessis N., Polycarpou A.C., Sahalos G.N. Theoretical Findings and Measurements on Planning a UHF RFID System Inside a Room // Radioengineering. – June 2011. – Vol. 20, № 2. – P. 387-407.
5. Lay Z., De La Roche G., Bessis N., Kuonen P., Clapworthe G., Zhou D., Zhang G. Statistical Intelligent Ray Launching Algorithm for Indoor Scenarios // Radioengineering. – June 2011. – Vol. 20, № 2. – P. 398-408.
6. Maltsev A., Maslennikov R., Lomayev A., Sevastyanov A., Khoryaev A. Statistical Channel Model for 60 GHz WLAN Systems in Conference Room Environment // Radioengineering. – June 2011. – Vol. 20, № 2. – P. 409-422.
7. Панычев А.И. Алгоритм трехмерной трассировки радиоволн локальной беспроводной сети // Известия ЮФУ. Технические науки. – 2012. – № 11 (136). – С. 31-41.
8. Панычев А.И., Дубинская И.В. Синтез лучевой траектории проникновения сигналов WLAN в смежные помещения // Известия ЮФУ. Технические науки. – 2013. – № 5 (142). – С. 116-122.
9. Боровиков В.А. и Кинбер Б.Е. Геометрическая теория дифракции. – М.: Связь, 1978. – 248 с.
10. Петров Б.М. Электродинамика и распространение радиоволн. – М.: Радио и связь, 2000. – 559 с.
11. Панычев А.И. Учет поляризационных эффектов в канале системы WLAN // Известия ЮФУ. Технические науки. – 2013. – № 5 (142). – С. 215-220.
12. Кисель Н.Н., Грищенко С.Г., Кардос Д.А. Оптимизация параметров комбинированной микрополосковой антенны // Известия ЮФУ. Технические науки. – 2012. – № 11(136). – С. 25-31.

Comments are closed.