Article

Article title FACE RECOGNITION ON GROUPS PHOTOS WITH USING SEGMENTATION ALGORITHMS
Authors A.I. Sherstobitov, V.P. Fedosov, V.A. Prihodchenko, D.V. Timofeev
Section SECTION I. METHODS IMAGE AND SIGNAL PROCESSING
Month, Year 11, 2013 @en
Index UDC 004.93’12, 004.93’14
DOI
Abstract This paper considers solution of face recognition problem in case image processing of group faces. A review of existing methods of pre-processing: filtering, segmentation are present. Considered a set of different approaches to solving the problem of face recognition on images. In paper present modification of method face recognition on base PCA (eigenface). Modification involve using reprocessing image of matting algorithm. Results of research is exam on several base of images (ORL, BioID) and manual set of images of group peoples – UserID. The results are shows an increase in the efficiency of face recognition in case using algorithms preliminary separation image on the background and field recognition. The proposed face recognition method is robust to the image background, that can significantly extend field of its using. Results of studies concluded that the use of image matting improves the robust of the system face recognition. The proposed algorithm allowed identify faces by image with single persons, and with group persons.

Download PDF

Keywords Pattern recognition; eiganface; face detection; image matting; reognition; identification.
References 1. Stan Z. Li, Anil K. Jain. Handbook of Face Recognition, Stan Z. Li, Anil K. Jain, Second Edition, Springer, 2011. – 699 p.
2. Rabia Jafri, Hamid R. Arabnia. A Survey of Face Recognition Techniques // Journal of Information Processing Systems – JIPS. – 2009. – Vol. 5, № 2. – Р. 41-68.
3. Махонин Г.М., Федосов В.П., Черниховская Г.Л. Обнаружение локационных объектов в сложных средах с поглощением // Радиотехника. – 2006. – № 2. – С. 90-95.
4. Viola P., Jones M.J. Rapid object detection using a boosted cascade of simple features // IEEE Conf. on Computer Vision and Pattern Recognition. – 2001. – Vol. 1. – P. 511-518.
5. Papageorgiou C., Oren M., and Poggio T. A general framework for object detection. In International Conference on Computer Vision, 1998.
6. Фомин А. Ф., Новоселов О.Н., Плющев А.В. Отбраковка аномальных результатов измерений. – М.: Энергоатомиздат. 1985. – 200 с.
7. Sochman J., Matas J. AdaBoost with totally corrective updates for fast face detection // Center for Machine Perception, Czech Technical University, Prague. 2004. URL:(http://cmp.felk.cvut.cz~sochmj1).
8. Шерстобитов А.И., Марчук В.И., Тимофеев Д.В., Сизякин Р.А. Классификация объектов при анализе текстурированных цветных цифровых изображений // Нелинейный мир. – 2012. – Т 10, № 11. – С. 769-776.
9. Levin A., Lischinski D., Weiss Y. A closed form solution to natural image matting, in Proceedings of IEEE CVPR, 2006. – P. 277-302.
10. Kyungnam Kim Face Recognition using Principle Component Analysis // Department of Computer Science University of Maryland, College Park. – P. 1-7.
11. The ORL Database of Faces [электронный ресурс] // 2010. URL:
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html (дата обращения – 10.12.2012).
12. Jesorsky O., Kirchberg K., Frischholz R., In J. Bigun and Smeraldi F. Editors, Audio and Video based Person Authentication – AVBPA 2001. – Springer, 2001. – P. 90-95.

Comments are closed.