Article

Article title MCELICE SECURITY SYSTEM IN RANDOM NETWORK BASED ON REED-SOLOMON NETWORK CODE
Authors E.A. Mikhailova
Section SECTION IV. METHODS AND TOOLS CRYPTOGRAPHY AND STEGANOGRAPHY
Month, Year 12, 2013 @en
Index UDC 517.19
DOI
Abstract The problem of error-correction transmission of the same data from one source to several receivers in wiretapped network of unknown structure is considered. The solution based on random network coding technique provided by Koetter and Kschischang. In this method network represent as an unknown structured graph, where each intermediate node creates a random linear combination of the received data and transmits this random combination. The network channel model, using a linear network coding, is constructed. Network subspace Reed-Solomon codes provided by Koetter and Kschischang that guaranteed efficient error-correction data transmission are described. Encoding and decoding algorithms are introduced. A new matrix-based interpretation of coding is constructed, appropriate algorithm is given. Public-key security system based on network Reed-Solomon code in matrix version which is an analogue of the well-known McEliece cryptosystem is provided. The purpose of constructed security system is to transmit securely the same data from one source which is know the public key to more receivers which are know the private key. Encoding and decoding algorithms for constructed security system are given, the algorithm-validation theorem is proved. In conclusion the symmetric version of security system is constructed, appropriate algorithms are changed, the advantages and disadvantages of the symmetric version are noted.

Download PDF

Keywords Error-correction coding; network Reed-Solomon codes; linear random network; public-key security system; McElise cryptosystem.
References 1. Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение. – М.: Техносфера, 2005. – 320 с.
2. Деундяк В.М., Михайлова Е.А. Применение матриц Вандермонда при передаче данных по q-ичному каналу со стираниями // Изв. ВУЗов. Северо-Кавказский регион. Естественные науки. – 2012. – № 3. – С. 5-9.
3. Михайлова Е.А. О реализации схемы В.Пана защиты информации в канале со стираниями // Математика и её приложения: Журнал Ивановского математического общества.
– 2011. – Вып. 1 (8). – С. 75-78.
4. Шнайер Б. Прикладная криптография. – М.: ТРИУМФ, 2002. – 816 с.
5. Сидельников В.М. Теория кодирования. – М.: Физматлит, 2006. – 324 с.
6. Габидулин Э.М., Пилипчук Н.И., Колыбельников А.И., Уривский А.В., Владимиров С.М., Григорьев А.А. Сетевое кодирование // Труды МФТИ. – 2009. – Т. 1, № 2. – С. 3-28.
7. Alshwede R., Cai N., Li S.-Y. R., Yeung R.W. Network information flow // IEEE Trans. Inf. Theory. – 2000. – Vol. 46. – P. 1204-1216.
8. Koetter R., Kschischang F.R. Coding for errors and erasures in random network coding // IEEE Trans. Inf. Theory. – 2008 – Vol. IT-54, № 8. – P. 3579-3591.
9. Li S.-Y. R., Yeung R. W., Cai N. Linear network coding // IEEE Trans. Inf. Theory. – 2003. – Vol. 49. – P. 371-381.
10. Diffie W., Hellman M.E. New Directions in Cryptography // IEEE Trans. Inf. Theory. – 1976. – Vol. IT-22, № 6. – P. 644-654.
11. McEliece R.J. A Public Key Cryptosystem Based o Algebraic Coding Theory // JPL DSN Progress Rep. – 1978. – Vol. 42-44. – P. 114-116.

Comments are closed.