Article

Article title DEVELOPMENT MODEL OF DYE-SENSITIZED SOLAR CELLS
Authors S.P. Malyukov, A.V. Saenko
Section SECTION III. ELECTRONICS AND ECOLOGY
Month, Year 01, 2014 @en
Index UDC 621.383
DOI
Abstract The developed numerical model of dye-sensitized solar cell based on titanium dioxide (TiO2) to build its theoretical current-voltage and power-voltage characteristics and determine its basic photovoltaic parameters such as short-circuit current density , open circuit voltage, maximum power density and conversion efficiency. Developed a numerical model based on a system of stationary one-dimensional differential equations of continuity, describing the generation, recombination, and transport of charge carriers (electrons and ions) in the structure of nanoporous TiO2, a sensitizing dye and the redox electrolyte. In this model included expressions for calculation of the coefficient of absorption solar radiation on the porosity of the film structure TiO2, the photon flux density in the spectral absorption of the dye molecules and the sequence of resistance in a solar cell on its topological dimension. Solution of differential equations of the model was carried out with the boundary conditions corresponding to the three basic modes of operation of the solar cell. As a result of numerical simulation found that the theoretical characteristics and photovoltaic solar cell parameters investigated are fully consistent with the presented experimental data.

Download PDF

Keywords Solar cell; TiO2 photoelectrode; numerical model; photovoltaic characteristics.
References 1. O’Regan B., Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. – 1991. – Vol. 353. – P. 737-740.
2. Gratzel M. Review Dye-sensitized solar cells // Journal of Photochemistry and Photobiology: Photochemistry Reviews. – 2003. – P. 145-153.
3. Di Wei. Review Dye Sensitized Solar Cells // International Journal of Molecular Sciences. – 2010. – Vol. 11. – P. 1103-1113.
4. Marko Topic, Andrej Campa. Optical and electrical modelling and characterization of dyesensitized solar cells // Current Applied Physics. – 2010. – P. 425-430.
5. Sodergren S., Hagfeldt A., Olsson J., Lindquist S.E. Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor-films in
photoelectrochemical cells // J. Phys. Chem. – 1994. – № 98. – P. 5552-5556.
6. Onodera M., Ogiya K. Modeling of dye-sensitized solar cells based on TiO2 electrode structure model // Japanese Journal of Applied Physics. – 2010. – № 49. – P. 73-77.
7. Nithyanandam K., Pitchumani R. Analysis and design of dye sensitized solar cells // Proceedings of the 14th International Heat Transfer Conference. – 2010. – P. 1-8.
8. Степаненко И.П. Основы микроэлектроники: Учеб. пособие для вузов. – М.: Лаборатория Базовых Знаний, 2003. – 488 с.
9. Плесков Ю.В. Фотоэлектрохимическое преобразование солнечной энергии. – М.: Химия, 1990. – 176 с.
10. Малюков С.П., Саенко А.В. Моделирование поглощения солнечного излучения плёнкой TiO2 в сенсибилизированном красителем солнечном элементе // Известия ЮФУ. Технические науки. – 2010. – № 12 (113). – C. 148-153.
11. Малюков С.П., Саенко А.В. Исследование спектра поглощения красителя эозина для применения в солнечных элементах на основе TiO2 // Известия ЮФУ. Технические науки. – 2011. – № 4 (117). – С. 98-102.
12. Anders Hagfeldt and Michael Gratzel. Molecular Photovoltaics // Acc. Chem. Res. – 2000. – P. 269-277.

Comments are closed.