Article

Article title DEPOSITS ACCUMULATION IN CONDITIONS OF COOLANT BOILING
Authors A.S. Kursky, V.V. Kalygin
Section SECTION IV. MATHEMATICS, MECHANICS, CHEMISTRY
Month, Year 01, 2014 @en
Index UDC 621.039.57-58
DOI
Abstract The developed methodology for predicting of deposits accumulation on the water-water reactors fuel rods is presented. The results of methods substantiation are exhibited in experiments. The experiments were performed at various stages of fuel rods operation in the boiling water reactor. The experiments were performed at various stages of fuel rods operation in the boiling water reactor. The effect of deposits formation of the small iron particles is theoretically predicted and experimentally observed. The recommendations have worked out for reducing the iron corrosion products in BWRs transient modes. The results of the experimental data showed that the fuel rods deposits on the boiling water reactor are mainly composed of copper and iron. The copper is located in dissolved form and it is deposited in the pores between the particles of the iron compounds. The thickness of deposits is determined by iron corrosion products. The effect of deposits formation of the small iron particles is theoretically predicted and experimentally observed. The relatively large particle is not able to penetrate into the laminar sublayer due to the action of the Magnus forces. The recommendations have worked out for reducing the iron corrosion products in BWRs transient modes. These recommendations based on the results of theoretical and experimental studies. The method of sharp collapse of pressure at the VK-50 of low power levels allows cleaning coolant from large particles of corrosion products without their deposition on the fuel rods. This rule"s of procedure can decide the problems of radiation safety and stability of the BWR fuel assemblies more effectively.

Download PDF

Keywords Vessel-type boiling water reactor (BWR); iron corrosion products; deposits in the fuel rods; the Magnus force.
References 1. Тяпков В.Ф., Чудакова И.Ю., Алексеенко О.А. Воднохимический режим на энергоблоках АЭС с РБМК-1000 // Теплоэнергетика. – 2011. – № 7. – С. 21-25.
2. Review of fuel failures in water cooled reactors. – Vienna: International Atomic Energy Agency, 2010, IAEA nuclear energy series. NF-T-2.1.
3. Курский А.С., Калыгин В.В., Семидоцкий И.И. Перспективы атомной теплофикации в России // Теплоэнергетика. – 2012. – № 5. – С. 1-7.
4. Смирнова И.М. Метод аналитического контроля поверхностных отложений на оболочках твэлов ядерных реакторов с водным теплоносителем // Заводская лаборатория. Диагностика материалов. – 2009. – № 11. – Т. 75. – С. 3-7.
5. Краснов А.М., Ещеркин В.М., Шмелев В.Е. и др. Процессы концентрирования растворенных примесей теплоносителя («хайд-аут») на исследовательском реакторе ВК-50
// Теплоэнергетика. – 2002. – № 7. – С. 18-23.
6. Краснов А.М., Ещеркин В.М., Черкасов В.В. и др. Экспериментальное обоснование методики накопления продуктов коррозии железа на твэлах реактора ВК-50 // Новые технологии для энергетики, промышленности и строительства: Сб. рефератов и статей. - 2003. – Вып. 5. – С. 17-23.

Comments are closed.