Article

Article title RESEARCH AND ANALYSIS OF METHODS OF DECISION-MAKING ON THE BASIS OF FUZZY INFORMATION
Authors A.V. Bozhenyuk, N.S. Openko
Section SECTION VII. INFORMATION TECHNOLOGIES AND INTELLECTUAL SYSTEMS
Month, Year 04, 2012 @en
Index UDC 519.14
DOI
Abstract This article describes the methods of decision making on the basis of constructing and justifying the fuzzy inference mechanism. This problem is relevant because it has wide practical application. In the paper the basic model of fuzzy inference methods Mamdani and Sugeno. Also described a method of selection decisions based on the truth of the rules of modus ponens. In this paper, we construct a model of decision-making on the basis of degree of truth rules modus ponens, used for the problem of setting a specific medical diagnosis in the event of fracture of the person. To illustrate the problem statement is presented. The effectiveness of this method is that it allows on the basis of the current state of the system ensure that all possible outcomes of an individual patient and posing as a definite diagnosis.

Download PDF

Keywords Fuzzy inference; linguistic variable; the degree of truth; modus ponens rule.
References 1. Заде Л.А. Понятие лингвистической переменной и его применение к принятию приближенных решений. – М.: Мир, 1976.
2. Zadeh L.A. Fuzzy sets // Inform. Control. – 1965. – Vol. 8. – P. 338-353.
3. Прикладные нечеткие системы / Под ред. Т.Тэрано, К.Асаи, М.Сугэно. – М.: Мир, 1993.
4. Борисов А.Н., Алексеев А.В., Крумберг О.А. и др. Модели принятия решений на основе лингвистической переменной. – Рига: Зинатне, 1982. – 256 с.
5. Mamdani E.H. and Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller // Int. J. Man-Mach. Stud. – 1975. – Vol. 7. – P. 1-13.
6. Takagi T.and Sugeno M. Fuzzy identification of systems and its applications to modeling and control // IEEE Tran. Syst., Man, Cybern. – 1985. – Vol. SMC 15. – P. 116-132.
7. Дьяконов В., Круглов В. Математические пакеты расширения MATLAB. Специальный справочник. – СПб.: Питер, 2001. – 480 с.
8. Лохин В.М., Макаров И.М., Манько С.В., Романов М.П. Методические основы аналитического конструирования регуляторов нечеткого управления // Известия РАН. ТиСУ. – 2000. – № 1. – C. 56-69.
9. Guney K., Sarikaya N. Comparison of Mamdani and Sugeno Fuzzy Inference System Models for Resonant Frequency Calculation of Rectangular Microstrip Antennas // Progress In Electromagnetics Research B. – 2009. – Vol. 12. – P. 81-104.
10. Берштейн Л.С., Боженюк А.В. Нечеткие модели принятия решений: дедукция, индукция, аналогия. – Таганрог: ТРТУ, 2001. – 110 с.
11. Берштейн Л.С., Боженюк А.В. Моделирование процесса определения предпочтительных параметров на основе нечеткого логического вывода // Электронное моделирование. – 1989. – № 3. – С. 98-101.
12. Bershtein L.S., Bozhenyuk A.V., Rozenberg I.N. Decision Making on the Basis of Monotonic Expert Information // 6th European Congress on Intelligent Techniques & Soft Computing.
Aachen, Germany, September 7-10, 1998. – Vol. 2. – P. 1136-1140.
13. Iancu I. Propagation of uncertainty and imprecision in knowledge-based systems // Fuzzy Sets and Systems. – 1998. – № 94. – P. 29-43.

Comments are closed.