Article

Article title DEVELOPMENT OF SECURE PROTOCOL FOR MOBILE CLUSTER SENSOR NETWORK MANAGMENT
Authors E.S. Abramov, E.S. Basan, Vijay Laxmi
Section SECTION II. SECURITY OF INFORMATION SYSTEMS AND NETWORKS
Month, Year 02, 2014 @en
Index UDC 004.056: 004.73
DOI
Abstract Ensuring the protection of wireless sensor network with topology changes dynamically due to the constant movement of nodes is not a trivial task. For such a network, you need to develop your own methods and security protocols that would ensure safe, effective and maximum network uptime. This paper proposes secure control protocol for mobile clustering wireless sensor network. Application of clustering allows to split the network into separate groups of sensors that can be monitored by the cluster head (CH), thereby to reduce the load on the base station (BS), to increase network capacity and to extend the lifespan of nodes, as well as provide additional control for each network node. Using the confidence level control system allows to build trusted connections between network nodes and prevent malicious actions of the attacker. This system provides protection against malicious insiders, against the introduction of the attacker into the guise of a legitimate user to the network, as well as against the interception of network node.

Download PDF

Keywords Wireless sensor networks; clustering; attack; trust; protocol; algorithms; anomaly detection; authenticity; confidence level.
References 1. Абрамов Е.С., Андреев А.В., Мордвин Д.В. Применение графов атак для моделирования сетевых воздействий // Известия ЮФУ. Технические науки. – 2012. – № 1 (126). – C. 165-174.
2. Kotenko, I.; Chechulin, A. A Cyber Attack Modeling and Impact Assessment Framework // 5th International Conference on Cyber Conflict (CyCon), 2013. (28.02.2014).
3. Ingols K., Lippmann R., Piwowarski K. Practical attack graph generation for network defense // ACSAC. IEEE Computer Society. – 2006. – P. 121-130.
4. Williams L., Lippmann R. and Ingols K. GARNET: A graphical attack graph and reachability network evaluation tool // Visualization for Computer Security (VizSEC), ser. Lecture Notes in Computer Science, J.R. Goodall, G.J. Conti, and K.-L. Ma, Eds., vol. 5210. Springer, 2008. – P. 44-59.
5. Common Vulnerabilities and Exposures (CVE). (28.02.2014).
6. Mell P., Scarfone K., Romanosky S. Common Vulnerability Scoring System (CVSS). (28.02.2014).
7. Andreev A.V., Mordvin D.V., Abramov E.S., Makarevich O.B. Corporate networks security evaluation based on attack graphs // Proceedings of the 4rd international conference on Security of information and networks (SIN '11). ACM, New York, NY, USA. – P. 29-36.
8. National Institute of Standards and Technology, “National Vulnerability Database, NVD. (28.02.2014).
9. Mordvin D.V., Abramov E.S., Makarevich O.B. Automated method for constructing of network traffic filtering rules // Proceedings of the 3rd international conference on Security of information and networks (SIN '10). ACM, New York, NY, USA. – P. 203-211.
10. Абрамов Е.С., Андреев А.В., Мордвин Д.В. Методы автоматизации построения правил фильтрации сетевого трафика // Информационное противодействие угрозам терроризма. – 2010. – № 14. – C. 121-127.
11. Абрамов Е.С., Андреев А.В., Мордвин Д.В. Метод и алгоритмы построения правил разграничения доступа между узлами сети // Информационное противодействие угрозам терроризма. – 2010. – № 14. – C. 127-132.
12. Security and Privacy Controls for Federal Information Systems and Organizations // National Institute of Standards and Technology. (28.02.2014).
13. Anoop Singhal, Ximming Ou NIST Interagency Report 7788 "Quantitative Security Risk Assessment of Enterprise Networks". (28.02.2014).

Comments are closed.