Статья

Название статьи АЛГОРИТМ ИНТЕГРИРОВАНИЯ ПОРОЖДАЮЩИХ УРАВНЕНИЙ ДЛЯ ВЫЧИСЛЕНИЯ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ
Автор М.И. Ледовской, Е.С. Синютин
Рубрика РАЗДЕЛ II. МЕТОДЫ, МОДЕЛИ И АЛГОРИТМЫ ОБРАБОТКИ ИНФОРМАЦИИ
Месяц, год 03, 2015
Индекс УДК 519.6:004.383
DOI
Аннотация Рассмотрена задача создания энергоэффективного алгоритма для вычисления элементарных функций в беспроводных сенсорных системах, где энергопотребление обеспечивается за счет накопления энергии из окружающей среды. В основу алгоритма положен таблично-алгоритмический метод вычисления функций и способ определения поправки путем интегрирования порождающих уравнений, описывающих поведение функции между ближайшим табличным и заданным значением аргумента. Предложена оригинальная реализация способа интегрирования порождающих уравнений. Процесс интегрирования развертывается по двоичным разрядам аргумента, а также используется переменный шаг, равный весу текущего разряда аргумента. На примере функций sin(x), cos(x) исследована возможность использования подходящих методов интегрирования: методов Эйлера 1-го и 2-го порядка, метода Рунге-Кутта 4-го порядка, из которых выбран метод Эйлера 2-го порядка. Получена зависимость методической погрешности алгоритма от порядка метода интегрирования и номера разряда аргумента. Определен шаг таблицы значений функций для рассмотренных методов интегрирования. Приведено сравнение предлагаемого алгоритма с методом линейной интерполяции и алгоритмом CORDIC. По сравнению с алгоритмом CORDIC число выполняемых циклов в среднем уменьшается в два раза. По сравнению с методом линейной интерполяции в несколько раз уменьшается количество табличных значений функций. Например, для функции cos(x) количество табличных значений уменьшается в 16 раз. При этом набор операций алгоритма ограничивается простыми операциями сложения (вычитания) и сдвига. Приведены результаты экспериментального анализа методической, инструментальной и полной погрешности алгоритма в системе MATLAB. В условиях ограниченной разрядности микроконтроллера и вычислений с фиксированной точкой погрешность алгоритма принимает допустимые значения, соизмеримые с погрешностью округления данных. Результаты настоящей статьи могут найти применение при разработке алгоритмического и программного обеспечения для беспроводных сенсорных модулей на базе микроконтроллеров, а также других видов встраиваемых систем с низким энергопотреблением.

Скачать в PDF

Ключевые слова Встраиваемые системы; вычисление функций; таблично-алгоритмический метод; алгоритм CORDIC; алгоритм численного интегрирования.
Библиографический список 1. Новиков А. Как снизить энергопотребление встраиваемого приложения на базе микроконтроллера // Электронные компоненты. – 2015. – № 1. – С. 56-60.
2. Беляев А.О., Юдина Е.В., Синютин Е.С. Перспективные беспроводные датчики системы кардиомониторирования и эргометрии для комфортного съема биофизиологических показателей. // Труды Конгресса по интеллектуальным системам и информационным технологиям «IS&IT'14». В 4 т. Т. 2. – М.: Физматлит, 2014. – С. 117-122.
3. Bachmann C., Ashouei M., Pop V., Vidojkovic M., H. de Groot, and Gyselinckx B. Low-Power Wireless Sensor Nodes for Ubiquitous Long-Term Biomedical Signal Monitoring // IEEE Com. Mag. – Jan. 2012. – Vol. 50, No.1. – P. 36-43.
4. Гольцова М. Аккумулирование кинетической энергии из окружающей среды // Электроника НТБ. – 2011. – № 7. – С. 78–85.
5. Harb A. Energy Harvesting: State-of-the-Art // Renewable Energy 36 (Elsevier). – 2011. – Vol. 36, No. 10. – P. 2641-2654.
6. Попов Б.А., Теслер Г.С. Вычисление функций на ЭВМ: справочник. – Киев: Наукова думка, 1984. – 600 с.
7. Strollo A.G. M., De Caro D. and Petra N. Elementary functions hardware implementation using constrained piecewise polynomial approximations // IEEE Trans. Comput. – 2011. – Vol. 60. – P. 418-432.
8. Lars E. Bengtsson. Lookup Table Optimization for Sensor Linearization in Small Embedded Systems // Journal Sensor Technology. Doi:10. 4236/jst. 2012. 24025, Dec. 2012.
9. Байков В.Д., Смолов В.Б. Специализированные процессоры: Итерационные алгоритмы и структуры. – М.: Радио и связь, 1985. – 288 с.
10. Torres, Omar A. Design and implementation of a CORDIC rotator and software integration for low-power exponent computation," The University of Texas Digital Repository (UTDR), 2013–12. Available at: http://hdl.handle.net/2152/24052.
11. Moroz L., Nagayama S., Mykytiv T., Kirenko I., Boretskyi T. Simple Hybrid Scaling-Free CORDIC Solution for FPGAs," International Journal of Reconfigurable Computing Volume 2014 (2014), Article ID 615472, 4 pages, http://dx.doi.org/10.1155/2014/615472.
12. Теслер Г.С. Адаптивные экономичные асинхронные итерационные методы «цифра за цифрой» // Математические машины и системы. – 1999. – № 1. – С. 43-52.
13. Pongyupinpanich Surapong, FaizalAryaSamman and Manfred Glesne. Design and Analysis of Extension-Rotation CORDIC Algorithms based on Non-Redundant Method // International Journal of Signal Processing, Image Processing and Pattern Recognition. – March, 2012. – Vol. 5, No. 1.
14. Дайнеко Д. Реализация CORDIC-алгоритма на ПЛИС // Компоненты и технологии. – 2011. – № 12. – С. 36-46.
15. K. Sharat, B.V. Uma, D.M. Sagar. Calculation of Sine and Cosine of an Angle using the CORDIC Algorithm // International Journal of Innovative Technology and Research (IJITR). – February–March 2014. – Vol. No.2, Issue No. 2. – P. 891-895.
16. 16. Chadha A., Jyoti D., Bhatia M.G. Design and Simulation of an 8-bit Dedicated Processor for calculating the Sine and Cosine of an Angle using the CORDIC Algorithm // IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), arXiv:1111.1086 (2011).
17. Бахвалов Н.С., Жидков Н.П., Кобельников Г.М. Численные методы. – М.: Бином. Лаборатория знаний, 2012. – 636 с.
18. Каляев А.В. Теория цифровых интегрирующих машин и структур. – М.: Советское радио, 1970. – 472 с.
19. Ледовской М.И. Алгоритм вычисления функций SIN(X) и COS(X) для 16-разрядных микроконтроллеров // Известия ЮФУ. Технические науки. – 2014. – № 4 (153). – С. 164-170.
20. Ледовской М.И. Моделирование алгоритма инерциальной навигации в MATLAB-SIMULINK // Ползуновский вестник. – 2011. – № 3/1. – С. 9-11.

Comments are closed.