Статья

Название статьи РАЗМЕЩЕНИЕ ЭЛЕМЕНТОВ СХЕМ ЭВА НА ОСНОВЕ ГИБРИДНЫХ ИНТЕЛЛЕКТУАЛЬНЫХ МЕТОДОВ
Автор Л.А. Гладков, Н.В. Гладкова, С.Н. Лейба
Рубрика РАЗДЕЛ I. МОДЕЛИРОВАНИЕ И ПРОЕКТИРОВАНИЕ
Месяц, год 04, 2015
Индекс УДК 658.512.2.011.5
DOI
Аннотация Рассматривается задача размещения элементов схем электронно-вычислительной аппаратуры (ЭВА) на коммутационном поле. Данная задача относится к задачам конструкторского этапа проектирования ЭВА и является NP-полной задачей. Приведена постановка задачи размещения элементов схем ЭВА на множестве заданных позиций дискретно-го рабочего поля. Предложен подход к решению поставленной задачи на основе использования модифицированного генетического алгоритма. Разработана методика кодирования решений для выполнения генетического поиска. Приведен подробный пример, иллюстрирующий предложенную методику кодирования решений и изменение решения в зависимости от формы записи. Представлена общая структура предлагаемого гибридного подхода. Дано описание структуры используемого нечеткого логического контроллера. Рассмотрены основные принципы работы нечеткого логического контроллера, описаны правила и механизмы процесса фаззификации/дефаззификации решений. Для повышения эффективности работы нечеткого логического контроллера предложено использовать многослойную нейронную сеть. Отмечены основные отличия предложенной структуры нейронной сети от «традиционных» нейронных сетей. Для оценки качества получаемых решений и процесса поиска решений в целом предложено использовать параметры характеризующие динамику изменения среднего и лучшего значений целевой функции, а также разнообразие популяции. Для каждого параметра заданы границы диапазона допустимых значений. Приведено краткое описание программы и результатов ее тестирования, подтверждающих эффективность предложенного метода. Показаны зависимости вероятности выполнения генетических операторов от значений управляющих параметров. Определены параметры нечеткого логического контроллера, задаваемые по умолчанию, а также вид функций принадлежности нечетких множеств.

Скачать в PDF

Ключевые слова Размещение элементов схем ЭВА; нечеткий генетический алгоритм; искусственная нейронная сеть; эволюционные вычисления; гибридные интеллектуальные методы.
Библиографический список 1. Гладков Л.А., Курейчик В.М., Курейчик В.В., Сороколетов П.В. Биоинспирированные методы в оптимизации. – М.: Физматлит, 2009. – 384 с.
2. Гладков Л.А., Курейчик В.В., Курейчик В.М. Генетические алгоритмы. – М.: Физматлит, 2010. – 368 с.
3. Гладков Л.А., Курейчик В.В., Курейчик В.М., Родзин С.И. Основы теории эволюционных вычислений. Монография. – Ростов-на-Дону: Изд-во ЮФУ, 2010.
4. Курейчик В.В., Курейчик В.М., Родзин С.И. Концепция эволюционных вычислений, инспирированных природными системами // Известия ЮФУ. Технические науки. – 2009. – № 4 (93). – C. 16-24.
5. Cohoon J.P., Karro J., Lienig J. Evolutionary Algorithms for the Physical Design of VLSI Circuits. Advances in Evolutionary Computing: Theory and Applications, Ghosh, A., Tsutsui, S. (eds.) Springer Verlag, London, 2003. – P. 683-712.
6. Charles J. Alpert, Dinesh P. Mehta, Sachin S. Sapatnekar. Handbook of algorithms for physical design automation. CRC Press, New York, USA, 2009.
7. Норенков И.П. Основы автоматизированного проектирования. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. – 336 с.
8. Shervani N. Algorithms for VLSI physical design automation. – USA, Kluwer Academy Publisher, 1995. – 538 p.
9. Гладков Л.А. О некоторых подходах к построению гибридных интеллектуальных систем для решения графовых задач // Новости искусственного интеллекта. – 2000. – № 3. – С. 71-90.
10. Курейчик В.М. Модифицированные генетические операторы // Известия ЮФУ. Технические науки. – 2009. – № 12 (101). – C. 7-15.
11. Mychalewicz Z. Genetic algorithms + data structures = evolution programs. Springer Verlag, 1996.
12. Herrera F., Lozano M. Fuzzy Adaptive Genetic Algorithms: design, taxonomy, and future directions // Soft Computing 7(2003), Springer-Verlag, 2003. – P. 545-562.
13. Herrera F., Lozano M. Adaptation of genetic algorithm parameters based on fuzzy logic controllers. In: F. Herrera, J. L. Verdegay (eds.) Genetic Algorithms and Soft Computing, Physica-Verlag, Heidelberg, 1996. – P. 95-124.
14. Kacprzyk J. Multistage control under fuzziness using genetic algorithms // Control and Cybernetics. – Vol. 25, № 6. – P. 1181-1216.
15. Ярушкина Н.Г. Основы теории нечетких и гибридных систем. – М.: Финансы и статистика, 2004. – 320 c.
16. Батыршин И.З., Недосекин А.О. и др. Нечеткие гибридные системы. Теория и практика / Под ред. Н.Г. Ярушкиной. – М.: Физматлит, 2007. – 208 c.
17. Пегат А. Нечеткое моделирование и управление. – М.: БИНОМ. Лаборатория знаний, 2009. – 798 c.
18. Борисов В.В., Круглов В.В., Федулов А.С. Нечеткие модели и сети. – М.: Горячая линия – Телеком, 2007. – 284 c.
19. Гладков Л.А. Интегрированный алгоритм решения задач размещения и трассировки на основе нечетких генетических методов // Известия ЮФУ. Технические науки. – 2011. – № 7 (120). – C. 22-30.
20. Гладков Л.А. Гибридный генетический алгоритм решения задачи размещения элементов СБИС с учетом трассируемости соединений // Вестник ростовского государственного университета путей сообщения. – 2011. – № 3. – C. 58-66.

Comments are closed.